Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (1): 83-89    DOI: 10.11900/0412.1961.2016.00142
Orginal Article Current Issue | Archive | Adv Search |
A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys
Jing BAI1,2,3(),Ze LI2,Zhen WAN2,Xiang ZHAO1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3 Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Qinhuangdao 066004, China
Cite this article: 

Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys. Acta Metall Sin, 2017, 53(1): 83-89.

Download:  HTML  PDF(1370KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) have attracted great attention for more than two decades, due to their large magnetic shape memory effect that originates from the rearrangement of martensitic variants under an external magnetic field. Over the past decade, accumulated knowledge on the properties of Ni-Mn-Ga Heusler alloys has allowed people to foresee the possibility of employing these alloys in device applications. However, the low operating temperatures and high brittleness remain the major drawbacks for the industrial application. Consequently, there has been growing interest in the modification of Ni-Mn-Ga alloys by adding a fourth element to increase transformation temperatures and to improve ductility. A recent study shows that the ductility has been effectively improved in Cu-doped Ni-Mn-Ga alloy under the situation of single phase via strengthening grain boundaries. In addition, the crystal structure, martensitic transformation, magnetic properties, high temperature magnetoplasticity and magnetocaloric effect have been reported in Ni-Mn-Ga-Cu alloys. Experimental results have shown that the martensitic transformation temperature (Tm) is drastically increased and the Curie temperature (TC) slightly decreased with Cu addition. As already known, the alloying elements affect both the crystal and electronic structures and hence the stability of austenite and martensite phases. Therefore, knowledge of the effects of Cu addition is of great importance to understand the composition dependence of Tm and TC. First-principles calculation results on Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) ferromagnetic shape memory alloys of this research draw following conclusions. The added Cu atom preferentially occupies the Mn site. The formation energy results indicate that ferromagnetic austenite is more stable than the paramagnetic one. The ferromagnetic state becomes instable and paramagnetic state becomes more stable when Mn is gradual substituted by Cu. The evaluated TC decreases with increasing Cu content that is derived from the decrease of total energy difference between the paramagnetic and the ferromagnetic austenite. The experimentally observed decrease of Tm is originated from the decrease of total energy difference between the austenite and the non-modulated martensite. The difference between the up and down DOS is reduced with the increasing Cu content that gives rise to the decrease of the total magnetic moments. The purpose of this work is to explore the influence of Cu addition on crystal structure, Tm, TC and electronic structures of Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) alloys by first-principles calculations, aiming at providing theoretical data and directions for developing high performance FSMAs.

Key words:  ferromagnetic shape memory alloy,      first-principle calculation,      phase stability,      magnetic property     
Received:  18 April 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51301036 and 51431005), High Technology Research and Development Program of China (No.2015AA034101), Fundamental Research Funds for the Central Universities (No.N130523001) and Natural Science Foundation of Hebei Province (No.E2013501089)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00142     OR     https://www.ams.org.cn/EN/Y2017/V53/I1/83

Fig.1  Schematics of crystal structures of Ni2MnGa

(a) cubic austenite (b) tetragonal non-modulated martensite

Fig.2  Formation energies (Eform) of the paramagnetic (P) and ferromagnetic (F) austenite phases of Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5, 2) alloys
x
Etot / eV ΔE1 / eV
TC / K
ΔE2 / eV
Paramagnetic austenite Ferromagnetic austenite Non-modulated martensite
0 -91.2143 -95.4713 -95.5339 4.2570 365 0.0626
0.5 -89.1821 -92.8067 -92.8845 3.6247 311 0.0778
1 -87.1279 -90.1651 -90.2773 3.0372 260 0.1122
1.5 -85.0584 -87.5453 -87.6700 2.4869 213 0.1247
2 -82.9336 -84.9459 -85.1345 2.0123 173 0.1886
Table 2  Total energies of the paramagnetic and ferromagnetic austenite and non-modulated martensite of Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5, 2) alloys
Fig.3  Spin-resolved total densities of states for Ni8Mn4-xGa4Cux alloys (EF—Fermi level)

(a) x=0 (X0) (b) x=1 (X1) (c) x=2 (X2)

x Phase a / nm c / nm c/a Magnetic moment
10-23 Am2
0 Cub. 0.5794 (5.823[26]) 3.7319 (3.8673[31], 3.9600[32])
Tet. 0.3845 (3.852[30]) 0.6568 (6.580[30]) 1.708 (1.708[30]) 3.7625
0.5 Cub. 0.5787 3.2895
Tet. 0.3821 0.6641 1.738 3.3071
1 Cub. 0.5782 2.8824
Tet. 0.3814 0.6623 1.736 2.8694
1.5 Cub. 0.5775 2.4418
Tet. 0.3803 0.6648 1.748 2.3843
2 Cub. 0.5764 2.0171
Tet. 0.3782 0.6672 1.764 1.8585
Table1  Equilibrium lattice parameters and magnetic moments (per primitive cell) of the cubic austenite (Cub.) and tetragonal non-modulated martensite (Tet.) for Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) alloys
Fig.4  Spin-resolved partial density of states for Ni8Mn3Ga4Cu1 (X1) alloy
[1] Sozinov A, Likhachev A A, Lanska N, et al.Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase[J]. Appl. Phys. Lett., 2002, 80: 1746
[2] Henry C P, Bono D, Feuchtwanger J, et al.AC field-induced actuation of single crystal Ni-Mn-Ga[J]. J. Appl. Phys., 2002, 91: 7810
[3] Gao L, Cai W, Liu A L, et al.Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21-xGdx ferromagnetic shape memory alloys[J]. J. Alloys Compd., 2006, 425: 314
[4] Guo S H, Zhang Y H, Zhao Z Q, et al.Effects of Sm on phase transformation in Ni-Mn-Ga alloys[J]. J. Rare Earth, 2004, 22: 875
[5] Tsuchiya K, Tsutsumi A, Ohtsuka H, et al.Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements[J]. Mater. Sci. Eng., 2004, A378: 370
[6] Wang H B, Chen F, Gao Z Y, et al. Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 990
[7] Yang S Y, Liu Y, Wang C P, et al.The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties[J]. J. Alloys Compd., 2013, 560: 84
[8] Cong D Y, Wang S, Wang Y D, et al.Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys[J]. Mater. Sci. Eng., 2008, A473: 213
[9] Li Y Y, Wang J M, Jiang C B.Study of Ni-Mn-Ga-Cu as single-phase wide-hysteresis shape memory alloys[J]. Mater. Sci. Eng., 2011, A528: 6907
[10] Stadler S, Khan M, Mitchell J, et al.Magnetocaloric properties of Ni2Mn1-xCuxGa[J]. Appl. Phys. Lett., 2006, 88: 192511
[11] Glavatskyy I, Glavatska N, Dobrinsky A, et al.Crystal structure and high-temperature magnetoplasticity in the new Ni-Mn-Ga-Cu magnetic shape memory alloys[J]. Scr. Mater., 2007, 56: 565
[12] Duan J F, Long Y, Bao B, et al.Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x=0.05, 0.07) alloys[J]. J. App. Phys., 2008, 103: 063911
[13] Jiang C B, Wang J M, Li P P, et al.Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys[J]. Appl. Phys. Lett., 2009, 95: 012501
[14] Roy S, Blackburn E, Valvidares S M, et al.Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa[J]. Phys. Rev., 2009, 79B: 235127
[15] Li C M, Luo H B, Hu Q M, et al.Site preference and elastic properties of Fe-, Co-, and Cu-doped Ni2MnGa shape memory alloys from first principles[J]. Phys. Rev., 2011, 84B: 024206
[16] Sokolovskiy V, Buchelnikov V, Skokov K, et al.Magnetocaloric and magnetic properties of Ni2Mn1-xCuxGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations[J]. J. Appl. Phys., 2013, 114: 183913
[17] Li G J, Liu E K, Zhang H G, et al.Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: the case of Ni50Mn5+xGa35-xCu10[J]. Appl. Phys. Lett., 2013, 102: 062407
[18] Zeleny M, Sozinov A, Straka L, et al.First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path[J]. Phys. Rev., 2014, 89B: 184103
[19] Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0≤x≤7) melt-spun ribbons[J]. J. Phys., 2016, 49D: 025002
[20] Hafner J.Atomic-scale computational materials science[J]. Acta Mater., 2000, 48: 71
[21] Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[22] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[23] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[24] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[25] Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations[J]. Phys. Rev., 1976, 13B: 5188
[26] Cong D Y, Zetterstr?m P, Wang Y D, et al.Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K[J]. Appl. Phys. Lett., 2005, 87: 111906
[27] Wu S K, Yang S T.Effect of composition on transformation temperatures of N-Mn-Ga shape memory alloys[J]. Mater. Lett., 2003, 57: 4291
[28] Bai J, Raulot J M, Zhang Y D, et al.Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, Co) from first-principles calculations[J]. J. Appl. Phys., 2011, 109: 014908
[29] Bai J, Raulot J M, Zhang Y D, et al.Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation[J]. J. Appl. Phys., 2010, 108: 064904
[30] Brown P J, Crangle J, Kanomata T, et al.The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa[J]. J. Phys.: Condens. Matter, 2002, 14: 10159
[31] Ayuela A, Enkovaara J, Nieminen R M.Ab initio study of tetragonal variants in Ni2MnGa alloy[J]. J. Phys.: Condens. Matter, 2002, 14: 5325
[32] Bungaro C, Rabe K M, Corso A D.First-principles study of lattice instabilities in ferromagnetic Ni2MnGa[J]. Phys. Rev., 2003, 68B: 134104
[33] Chakrabarti A, Biswas C, Banik S, et al.Influence of Ni doping on the electronic structure of Ni2MnGa[J]. Phys. Rev., 2005, 72B: 073103
[34] Fujii S, Ishida S, Asano S.Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn[J]. J. Phys. Soc. Jpn., 1989, 58: 3657
[35] Velikokhatnyi O I, Nuamov I I.Electronic structure and instability of Ni2MnGa[J]. Phys. Solid State, 1999, 41: 617
[36] Chen J, Li Y, Shang J X, et al.First principles calculations on martensitic transformation and phase instability of Ni-Mn-Ga high temperature shape memory alloys[J]. Appl. Phys. Lett., 2006, 89: 231921
[37] Bl?chl P E, Jepsen O, Andersen O K.Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev., 1994, 49B: 16223
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[3] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[4] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[5] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[6] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[7] Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films[J]. 金属学报, 2018, 54(3): 457-462.
[8] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[9] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[10] LIU Qinghua,HUANG Yujin,LIU Jian,HU Qiaodan,LI Jianguo . MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS[J]. 金属学报, 2013, 29(4): 391-398.
[11] ZHAO Suling CHEN Jing WANG Yilong. INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES[J]. 金属学报, 2012, 48(8): 977-982.
[12] CHAO Yuesheng, WANG Li, ZHANG Yanhui, ZHU Hanxian, LUO Liping. EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON THE MAGNETIC PULSED AMORPHOUS Fe52Co34Hf7B6Cu1 ALLOY[J]. 金属学报, 2012, 48(6): 749-752.
[13] LIU Rongming, YUE Ming, ZHANG Dongtao,Liu Weiqiang, ZHANG Jiuxing. PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES[J]. 金属学报, 2012, 48(4): 475-479.
[14] HUANG Lian, GAO Kunyuan, WEN Shengping, HUANG Hui, WANG Wei, NIE Zuoren. VALENCE ELECTRON STRUCTURE ANALYSIS OF EQUILIBRIUM AND METASTABLE PHASES OF Al3M(M=Ti, Zr, Hf)[J]. 金属学报, 2012, 48(4): 492-501.
[15] LI Dingpeng SONG Xiaoyan ZHANG Zhexu LU Nianduan QIAO Yinkai LIU Xuemei. PREPARATION AND PROPERTIES OF SINGLE–PHASE Sm5Co2 NANOCRYSTALLINE ALLOY[J]. 金属学报, 2012, 48(10): 1248-1252.
No Suggested Reading articles found!