Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1579-1585    DOI: 10.11900/0412.1961.2016.00091
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE
Zaoyu SHEN,Limin HE(),Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE. Acta Metall Sin, 2016, 52(12): 1579-1585.

Download:  HTML  PDF(6025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, intermetallic compounds have received a lot of considerable attentions for high temperature applications in modern aircraft manufacturers, high temperature engine components, shape memory devices and power generation industry. Among these materials, Ti-Al intermetallic compounds are fascinating materials owing to their low density, high stiffness and good creep properties. However, the structure of the metallic bonding in these intermetallics is the important reason for their insufficient ductility at room temperature. In this work, large-sized TiAl/Ti3Al multi-layered composite thin sheet with uniform chemical composition was prepared by electron beam physical vapor deposition (EB-PVD) technology. The composite and microstructure of multi-layered composite were analyzed by XRD and SEM. The results indicated that the prepared material with visible lamellar structure was composed of α2-Ti3Al and γ-TiAl phases. The densification process of composite was carried out by hot isostatic pressing. The multi-layered material was evaluated with static tensile test before and after hot isostatic pressing. The multi-layered composite after hot isostatic pressing had a higher tensile strength and a good characteristic of tensile elongation. Based on the tensile fracture morphology, the microscopic deformation mechanisms and fracture mechanism were investigated. After hot isostatic pressing, the fracture mechanism transforms to a mixed mode which consists of intergranular fracture and cleavage fracture.

Key words:  electron beam physical vapor deposition (EB-PVD),      microlaminate,      microstructure,      mechanical property,      fracture mechanism     
Received:  17 March 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00091     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1579

Fig.1  XRD spectrum of the TiAl/Ti3Al micolaminated composites
Fig.2  SEM images of surface (a) and cross-section (b) of TiAl/Ti3Al microlaminated composites, and cross-section after hot isostatic pressing (c) (Inset in Fig.2b show the enlarged view)
Fig.3  Cross-section SEM image (a) and corresponding EDS analysis (b) of TiAl/Ti3Al microlaminated sheet
Fig.4  Low (a, c) and high (b, d) magnified fracture SEM images of TiAl/Ti3Al microlaminates at room temperature before (a, b) and after (c, d) hot isostatic pressing
Fig.5  Low (a) and high (b~d) magnified fracture SEM images of TiAl/Ti3Al microlaminates at 825 ℃ after hot isostatic pressing
[1] Ward-Close C M, Froes F H.JOM, 1994; 46(1): 28
[2] Kim Y W.JOM, 1989; 41(7): 24
[3] Yue Y L, Wu H T, Wang Z J, Zhang L M.J Univ Jinan (Sci Tech), 2004; 18(2): 31
[3] (岳云龙, 吴海涛, 王志杰, 张联盟. 济南大学学报(自然科学版), 2004; 18(2): 31)
[4] Zhang J.J Aeron Mater, 2014; 34(4): 119(张继. 航空材料学报, 2014; 34(4): 119)
[5] Chen Y Y, Cui N, Kong F T.J Aeron Mater, 2014; 34(4): 112
[5] (陈玉勇, 崔宁, 孔凡涛. 航空材料学报, 2014; 34(4): 112)
[6] Shen Z Y, Huang G H, He L M, Mu R D, Gu J W, Zheng H.Rare Met Mater Eng, 2016; 45: 776
[6] (申造宇, 黄光宏, 何利民, 牟仁德, 顾金旺, 郑洪. 稀有金属材料与工程, 2016; 45: 776)
[7] Heathcote J, Odette G R, Lucas G E, Rowe R G, Skelly D W.Acta Mater, 1996; 44: 4289
[8] Ferrari B, Sanchez-Herencia A J, Moreno R.Mater Lett, 1998; 35: 370
[9] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[10] Sun Y B, Ma F M, Xiao W L, Ma C L.J Aeron Mater, 2014; 34(4): 9
[10] (孙彦波, 马凤梅, 肖文龙, 马朝利. 航空材料学报, 2014; 34(4): 9)
[11] Ma L, He L J, Shao X Y, Wang G P, Zhang M X.J Mater Eng, 2016; 44(1): 89
[11] (马李, 何录菊, 邵先亦, 王古平, 张梦贤. 材料工程, 2016; 44(1): 89)
[12] Dorsey J, Poteet C, Chen R, Wurster K.40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002: 0502
[13] Lapin J. Intermetallics, 2006; 14: 115
[14] Zhang D M, Chen G Q, Han J C, Yao Z Z.J Aeron Mater, 2006; 26(4): 35
[14] (章德铭, 陈贵清, 韩杰才, 姚振中. 航空材料学报, 2006; 26(4): 35)
[15] Cao H C, Lofvander J P A, Evans A G, Rowe R G, Skelly D W.Mater Sci Eng, 1994; A185: 87
[16] Liang X P, Liu Y, Li H Z, Gan Z Y, Liu B, He Y H.Mater Sci Eng, 2014; A619: 265
[17] Kulkarni K N, Sun Y, Sachdev A K, Lavernia E.Scr Mater, 2013; 68: 841
[18] Ma Z S, Zhou Y C, Long S G, Zhong X L, Lu C.Mech Mater, 2012; 54: 113
[19] Ma Z S, Long S G, Zhou Y C, Pan Y.Scr Mater, 2008; 59: 195
[20] Ma Z S, Zhou Y C, Long S G, Lu C.Int J Plasticity, 2012; 34: 1
[21] Li X H, Chen G Q, Han J C, Meng S H.Aerosp Mater Technol, 2005; 35(6): 13
[21] (李晓海, 陈贵清, 韩杰才, 孟松鹤. 宇航材料工艺, 2005; 35(6): 13)
[22] Ma L, Sun Y, He X D.Rare Met Mater Eng, 2008; 37: 325
[23] Movchan B A, Demchishin A V.Phys Met Metallogr-USSR, 1969; 28: 83
[24] Groves J F.PhD Dissertation, University of Virginia, 1998
[25] Jankowski A F.Nanostruct Mater, 1995; 6: 179
[26] Zhang D M, Chen G Q, Meng S H, Qu W, Han J C.Rare Met Mater Eng, 2007; 6: 973
[26] (章德铭, 陈贵清, 孟松鹤, 曲伟, 韩杰才. 稀有金属材料与工程, 2007; 6: 973)
[27] Zhang Y, Chu W Y, Wang Y B, Qiao L J, Xiao J M, Wang Z H, Bai C L.Acta Metall Sin, 1995; 31: 191
[27] (张跃, 褚武扬, 王燕斌, 乔利杰, 肖纪美, 王中怀, 白春礼. 金属学报, 1995; 31: 191)
[28] Shen Z Y, Huang G H, He L M, Mu R D, Chang Z D.Chin J Mater Res, 2014; 4: 314
[28] (申造宇, 黄光宏, 何利民, 牟仁德, 常振东.材料研究学报. 2014; 4: 314)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!