Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1572-1578    DOI: 10.11900/0412.1961.2016.00193
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF DEUTERIUM CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Zr-4 ALLOY
Cheng ZHANG,Xiping SONG(),Jingru LIU,Yun YANG,Li YOU
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Cheng ZHANG,Xiping SONG,Jingru LIU,Yun YANG,Li YOU. EFFECTS OF DEUTERIUM CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Zr-4 ALLOY. Acta Metall Sin, 2016, 52(12): 1572-1578.

Download:  HTML  PDF(13380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloy has been employed widely in nuclear industry, yet the absorption of deuterium in zircaloy is considered to play a critical role in mechanical properties especially in high temperature under a loss of coolant accident (LOCA) and application for deuterium storage. However, little is known about the microstructure evolution of zircaloy during deuterium absorption. In this work, deuterium was charged into the sample at 900oC and different pressures, and the effects of deuterium content on microstructure and mechanical properties of Zr-4 alloy have been studied by means of OM, BSE, SEM, XRD, and hardness and compressive tests. The results showed that the amount of deuteride increased with the increase of deuterium content from 1.35% to 2.21%, accompanying with the morphology variations from intragranular deuteride needles to intergranular deuteride blocks, which formed an interlinked deuteride configuration and grew into equiaxed α-Zr grains. Deuteride layer was observed on the surface of sample at higher deuterium content with the micro-crack appeared within it. The mostly deuteride was δ-deuteride, and ε-deuteride was observed on sample surface with high deuterium content. There existed a hardness gradient from surface to center. With the increase of deuterium content, the hardness increased and hardness gradient became evident. With increasing deuterium content, the compressive yield strength of samples in creased slightly, but the compressive ultimate strength decreased greatly from 1176 MPa (1.35%) to 856 MPa (2.21%). The deceasing of compressive ultimate strength was probably related to the formation of micro-crack. The cracks nucleated and propagated within the intergranular deuteride blocks, which leads to the degradation of compressive ultimate strength.

Key words:  zircaloy,      deuterium      content,      microstructure,      mechanical      property,      deuteride     
Received:  17 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.21171018 and 51271021)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00193     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1572

Fig.1  OM image of as received Zr-4 alloy (RD—radial direction, TD—axial direction)
Fig.2  Cross section (a) and surface (b) XRD spectra of Zr-4 alloys with different deuterium contents
Fig.3  Cross section OM images of Zr-4 alloys with 1.35% (a), 1.82% (b), 2.09% (c) and 2.21% (d) deuterium
Fig.4  Cross-section BSE images of Zr-4 alloys with 1.35% (a), 1.82% (b), 2.09 % (c) and 2.21% (d) deuterium
Fig.5  Vickers microhardness on cross section of Zr-4 alloys with different deuterium contents (a) and microstructure and microhardness on cross-section with 2.21% deuterium (b)
Fig.6  Compressive stress-strain (σ-ε) (a) and compressive ultimate strength (σc) (b) curves of Zr-4 alloys with different deuterium contents
Fig.7  BSE images of Zr-4 alloy with 2.21% deuterium before compression (a) and after compression (b~d) (Figs.7c and d correspond to areas 1 and 2 in Fig.7b, respectively)
Fig.8  Zr-H phase diagram[11] (Symbols A~D represent the corresponding deuterium content in the diagram, repectively)
Fig.9  Schematic of microstructure evolution of deuterated Zr-4 alloy
[1] Zinkle S J, Was G S.Acta Mater, 2013; 61: 735
[2] Li Z K, Liu J Z, Xue X Y.Mat-China, 2007; 26(1): 6
[2] (李中奎, 刘建章, 薛祥义. 中国材料进展, 2007; 26(1): 6)
[3] Northwood D O.Mater Des, 1985; 6: 58
[4] Motta A T, Yilmazbayhan A, Da Silva M J G, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q, Jeong Y H, Park J Y.J Nucl Mater, 2007; 371: 61
[5] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.Acta Metall Sin, 2011; 47: 865
[5] (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[6] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q.Acta Metall Sin, 2012; 48: 1103
[6] (孙国成, 周邦新, 姚美意, 谢世敬, 李强. 金属学报, 2012; 48: 1103)
[7] Allen T R, Konings R J M, Motta A T. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 49
[8] Forgeron T, Brachet J C, Barcelo F, Castaing A, Hivroz J, Mardon J P, Bernaudat C.In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, West Conshohocken, PA: ASTM International, 2000: 256
[9] Zinkle S J, Terrani K A, Gehin J C, Ott L J, Snead L L.J Nucl Mater, 2014; 448: 374
[10] Yang Y, Song X P, Zhang C.J Nucl Mater, 2015; 465: 97
[11] Zhao C, Song X P, Yang Y, Zhang B.Int J Hydrogen Energy, 2013; 38: 10903
[12] Yang Y, Song X P.Acta Metall Sin, 2016; 52: 100
[12] (杨云, 宋西平. 金属学报, 2016; 52: 100)
[13] Sidhu S S, Murthy N S, Campos F P.Adv Chem Ser, 1963; 39: 87
[14] Zuzek E, Abriata J P, San-Martin A, Manchester F D.Bull Alloy Phase Diagrams, 1990; 11: 385
[15] Qin W, Kiran Kumar N A P, Szpunar J A, Kozinski J.Acta Mater, 2011; 59: 7010
[16] Carpenter G J C.J Nucl Mater, 1973; 48: 264
[17] Pshenichnikov A, Stuckert J, Walter M.Nucl Eng Des, 2015; 283: 33
[18] Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S. J Alloys Compd#/magtechI#, 1999; 293-295: 23
[19] Kuroda M, Setoyama D, Uno M, Yamanaka S.J Alloys Compd, 2004; 368: 211
[20] Wang Z Y, Garbe U, Li H J, Studer A J, Harrison R P, Callaghan M D, Wang Y B, Liao X Z.Scr Mater, 2012; 67: 752
[21] Wang ZY, Garbe U, Li HJ, Harrison R P, Kaestner A, Lehmann E.Metall Mater Trans, 2014; 45B: 532
[22] Simpson L A, Cann C D.J Nucl Mater, 1979; 87: 303
[23] Kim Y S, Ahn S B, Cheong Y M.J Alloys Compd, 2007; 429: 221
[24] Shi S Q, Puls M P.J Nucl Mater, 1994; 208: 232
[25] Puls M P.Metall Trans, 1988; 19A: 1507
[26] Bai J B, Fran?ois D. J Nucl Mater, 1992; 187: 186
[27] Bai J B, Prioul C, Francois D.Metall Mater Trans, 1994; 25A: 1185
[28] Grange M, Besson J, Andrieu E.Metall Mater Trans, 2000; 31A: 679
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[14] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!