Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1586-1594    DOI: 10.11900/0412.1961.2016.00203
Orginal Article Current Issue | Archive | Adv Search |
STUDY ON ADSORPTION AND DISSOCIATION OF WATER MOLECULE ON Au, Cu AND THEIR ALLOYS' SURFACES BY DFT CALCULATIONS
Zongyou JIANG1,2,Zongyan ZHAO1,2()
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Key Laboratory of Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650504, China;
Cite this article: 

Zongyou JIANG,Zongyan ZHAO. STUDY ON ADSORPTION AND DISSOCIATION OF WATER MOLECULE ON Au, Cu AND THEIR ALLOYS' SURFACES BY DFT CALCULATIONS. Acta Metall Sin, 2016, 52(12): 1586-1594.

Download:  HTML  PDF(1622KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to reduce the amount and cost of gold catalyst in practical application, it is an effective technical strategy to construct binary metal alloy with gold and transition metals. In this work, the adsorption behaviors and dissociation reaction path of water on the different surfaces of Au, Cu, and AuCu binary alloy were studied by using DFT calculations. Based on the calculations, the corresponding catalytic performance of each model was further analyzed. The calculated results showed that the catalytic activity of the considered four surface models is on the following order: Au(111) < AuCu(111)-Cu < AuCu(111)-Au < Cu(111), if using the active energy as comparison standard. The underlying reason of this phenomenon is closely related with the adsorption behavior: the molecular adsorptions of water on Cu(111) and AuCu(111)-Au surfaces have relatively small adsorption energies; while at the same time, the dissociation adsorptions of water on these two surfaces have relatively large adsorption energies. Based on the electron transfer and bonding electronic structure, it could be found that the more electrons transfer between surface and water or H+OH groups, the more strong interaction between catalyst and adsorbate. Furthermore, the overlapping or hybridization between the d states of metal atoms on the surface and the 1b1 states of water or lb1-like states of H+OH groups also determines this interaction. Therefore, using AuCu binary alloy to replace Au as catalyst or co-catalyst reduces cost, and enhances the catalytic activity.

Key words:  water dissociation,      binary metal alloy      DFT calculation,      catalytic reaction     
Received:  27 May 2016     
Fund: Supported by National Natural Science Foundation of China (No.21263006) and 18th Young Academic and Technical Leaders Reserve Talent Project of Yunnan Province (No.2015HB015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00203     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1586

Fig.1  Different adsorption states and reaction path of water on Au(111) surface (a), and the local configurations of molecular adsorption (b) and dissociation adsorption (c) (SS—separated state, IS—initial state, TS—transit state, FS—final state)
Model State dOW-HW / nm HW-OW-HW /(°) dM-HW/ nm dM-OW / nm ∠W-S /(°)
Au(111) IS 0.0984 0.0985 104.587 0.3276 0.3185 0.2571 4.375
TS 0.0983 0.1883 154.758 0.3768 0.1641 0.2125 78.141
FS 0.0986 0.2237 153.875 0.3664 0.1619 0.2113 57.029
Cu(111) IS 0.0988 0.0988 105.354 0.2857 0.2858 0.2168 15.190
TS 0.0987 0.1569 126.960 0.2778 0.1773 0.1968 41.649
FS 0.0981 0.3866 95.969 0.2731 0.1735 0.1997 88.792
AuCu(111)-Au IS 0.0983 0.0985 105.055 0.3646 0.3135 0.2646 13.405
TS 0.0986 0.1503 141.136 0.2922a 0.1839a 0.2310a 38.957
0.2992b 0.1915b 0.2314b
FS 0.0982 0.3077 95.809 0.1972a 0.1762a 0.1745a 83.432
0.2527b 0.1727b 0.1874b
AuCu(111)-Cu IS 0.0987 0.0988 105.907 0.3226 0.3053 0.2136 20.408
TS 0.0975 0.2211 127.245 0.2931a 0.1624a 0.1852a 21.010
0.3097b 0.2483b 0.2997b
FS 0.0987 0.4212 114.274 0.2587a 0.1914a 0.1905a 22.745
0.2872b 0.1755b 0.2328b
Table 1  Structural parameters of water adsorption and dissociation on different materials surfaces in this work
Fig.2  Different adsorption states and reaction path of water on Cu(111) surface (a), and the local configurations of molecular adsorption (b) and dissociation adsorption (c)
Fig.3  Different adsorption states and reaction path of water on AuCu(111)-Au surface (a), and the local configurations of molecular adsorption (b) and dissociation adsorption (c)
Fig.4  Different adsorption states and reaction path of water on AuCu(111)-Cu surface (a), and the local configurations of molecular adsorption (b) and dissociation adsorption (c)
Fig.5  Profile of mean electron density difference of water on Au(111), Cu(111), AuCu(111) surfaces by the different adsorption states
Fig.6  Local and partial density of states of water on Au(111) surface (a), Cu(111) surface (b), AuCu(111)-Au surface (c) and AuCu(111)-Cu surface (d) at the present of molecular adsorption or dissociation adsorption (EF—Fermi level)
[1] Benton A F, Elgin J C.J Am Chem Soc, 1926; 48: 3027
[2] Hutchings G J.J Catal, 1985; 96: 292
[3] Haruta M, Kobayashi T, Sano H, Yamada N.Chem Lett, 1987; 16: 405
[4] Haruta M, Yamada N, Kobayashi T, Iijima S.J Catal, 1989; 115: 301
[5] Friend C M, Hashmi A S K.Accounts Chem Res, 2014; 47: 729
[6] Wu C Y, Horibe T, Jacobsen C B, Toste F D.Nature, 2015; 517: 449
[7] Qiao B T, Lin J, Wang A Q, Chen Y, Zhang T, Liu J Y.Chin J Catal, 2015; 36: 1505
[7] (乔波涛, 林坚, 王爱琴, 陈洋, 张涛, 刘景月. 催化学报, 2015; 36: 1505)
[8] Dai W J, Yan J Q, Dai K, Li L D, Guan N J. Chin J Catal, 2015; 36: 1968
[8] (代卫炯, 闫俊青, 戴珂, 李兰冬, 关乃佳. 催化学报, 2015; 36: 1968)
[9] Du C, Gao X H, Chen W.Chin J Catal, 2016; 37: 1049(杜诚, 高小惠, 陈卫. 催化学报, 2016; 37: 1049)
[10] Wang J, Cui D M.Chin J Org Chem, 2016; 36: 1163(王剑, 崔冬梅. 有机化学, 2016; 36: 1163)
[11] Yan K, Liao J Y, Wu X, Xie X N.RSC Adv, 2013; 3: 3853
[12] Konkolewicz D, Schr?der K, Buback J, Bernhard S, Matyjaszewski K.ACS Macro Lett, 2012; 1: 1219
[13] Ullmann F, Bielecki J.Ber Deutsch Chem Ges, 1901; 34: 2174
[14] Nadler R, Sanz J F.J Mol Model, 2012; 18: 2433
[15] Shao L, Wang Y H, Zhang D Y, Xu J, Hu X P.Angew Chem Int Ed, 2016; 55: 5014
[16] Li J Y, Peng J J, Bai Y, Hu Y Q, Zhang G D, Lai G Q.Chin J Org Chem, 2009; 29: 1938
[16] (厉嘉云, 彭家建, 白赢, 胡应乾, 张国栋, 来国桥. 有机化学, 2009; 29: 1938)
[17] Manthiram K, Beberwyck B J, Alivisatos A P.J Am Chem Soc, 2014; 136: 13319
[18] Kundu J, Pradhan D.ACS Appl Mater Interfaces, 2014; 6: 1823
[19] Xi Z F.Sci China. 2009; 39B: 1115(席振峰. 中国科学, 2009; 39B: 1115)
[20] Fiorenza R, Crisafulli C, Condorelli G G, Lupo F, Scirè S.Catal Lett, 2015; 145: 1691
[21] Li L C, Wang C S, Ma X X, Yang Z H, Lu X H.Chin J Catal, 2012; 33: 1778)
[21] (李力成, 王昌松, 马璇璇, 杨祝红, 陆小华. 催化学报, 2012; 33: 1778)
[22] Kunimoto M, Nakai H, Homma T.ECS Trans, 2014; 58: 73
[23] Liu T H, Zhang Z J, Fu B, Yang X M, Zhang D H.Chem Sci, 2016; 7: 1840
[24] Nie X W, Luo W J, Janik M J, Asthagiri A.J Catal, 2014; 312: 108
[25] Sansa M, Dhouib A, Guesmi H. J Chem Phys, 2014; 141: 064709
[26] Zhang N L, Chen X, Lu Y J, An L, Li X, Xia D.Small, 2014; 10: 2662
No related articles found!
No Suggested Reading articles found!