|
|
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE |
Zaoyu SHEN,Limin HE( ),Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU |
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
Cite this article:
Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE. Acta Metall Sin, 2016, 52(12): 1579-1585.
|
|
Abstract In recent years, intermetallic compounds have received a lot of considerable attentions for high temperature applications in modern aircraft manufacturers, high temperature engine components, shape memory devices and power generation industry. Among these materials, Ti-Al intermetallic compounds are fascinating materials owing to their low density, high stiffness and good creep properties. However, the structure of the metallic bonding in these intermetallics is the important reason for their insufficient ductility at room temperature. In this work, large-sized TiAl/Ti3Al multi-layered composite thin sheet with uniform chemical composition was prepared by electron beam physical vapor deposition (EB-PVD) technology. The composite and microstructure of multi-layered composite were analyzed by XRD and SEM. The results indicated that the prepared material with visible lamellar structure was composed of α2-Ti3Al and γ-TiAl phases. The densification process of composite was carried out by hot isostatic pressing. The multi-layered material was evaluated with static tensile test before and after hot isostatic pressing. The multi-layered composite after hot isostatic pressing had a higher tensile strength and a good characteristic of tensile elongation. Based on the tensile fracture morphology, the microscopic deformation mechanisms and fracture mechanism were investigated. After hot isostatic pressing, the fracture mechanism transforms to a mixed mode which consists of intergranular fracture and cleavage fracture.
|
Received: 17 March 2016
|
[1] | Ward-Close C M, Froes F H.JOM, 1994; 46(1): 28 | [2] | Kim Y W.JOM, 1989; 41(7): 24 | [3] | Yue Y L, Wu H T, Wang Z J, Zhang L M.J Univ Jinan (Sci Tech), 2004; 18(2): 31 | [3] | (岳云龙, 吴海涛, 王志杰, 张联盟. 济南大学学报(自然科学版), 2004; 18(2): 31) | [4] | Zhang J.J Aeron Mater, 2014; 34(4): 119(张继. 航空材料学报, 2014; 34(4): 119) | [5] | Chen Y Y, Cui N, Kong F T.J Aeron Mater, 2014; 34(4): 112 | [5] | (陈玉勇, 崔宁, 孔凡涛. 航空材料学报, 2014; 34(4): 112) | [6] | Shen Z Y, Huang G H, He L M, Mu R D, Gu J W, Zheng H.Rare Met Mater Eng, 2016; 45: 776 | [6] | (申造宇, 黄光宏, 何利民, 牟仁德, 顾金旺, 郑洪. 稀有金属材料与工程, 2016; 45: 776) | [7] | Heathcote J, Odette G R, Lucas G E, Rowe R G, Skelly D W.Acta Mater, 1996; 44: 4289 | [8] | Ferrari B, Sanchez-Herencia A J, Moreno R.Mater Lett, 1998; 35: 370 | [9] | Was G S, Foecke T.Thin Solid Films, 1996; 286: 1 | [10] | Sun Y B, Ma F M, Xiao W L, Ma C L.J Aeron Mater, 2014; 34(4): 9 | [10] | (孙彦波, 马凤梅, 肖文龙, 马朝利. 航空材料学报, 2014; 34(4): 9) | [11] | Ma L, He L J, Shao X Y, Wang G P, Zhang M X.J Mater Eng, 2016; 44(1): 89 | [11] | (马李, 何录菊, 邵先亦, 王古平, 张梦贤. 材料工程, 2016; 44(1): 89) | [12] | Dorsey J, Poteet C, Chen R, Wurster K.40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002: 0502 | [13] | Lapin J. Intermetallics, 2006; 14: 115 | [14] | Zhang D M, Chen G Q, Han J C, Yao Z Z.J Aeron Mater, 2006; 26(4): 35 | [14] | (章德铭, 陈贵清, 韩杰才, 姚振中. 航空材料学报, 2006; 26(4): 35) | [15] | Cao H C, Lofvander J P A, Evans A G, Rowe R G, Skelly D W.Mater Sci Eng, 1994; A185: 87 | [16] | Liang X P, Liu Y, Li H Z, Gan Z Y, Liu B, He Y H.Mater Sci Eng, 2014; A619: 265 | [17] | Kulkarni K N, Sun Y, Sachdev A K, Lavernia E.Scr Mater, 2013; 68: 841 | [18] | Ma Z S, Zhou Y C, Long S G, Zhong X L, Lu C.Mech Mater, 2012; 54: 113 | [19] | Ma Z S, Long S G, Zhou Y C, Pan Y.Scr Mater, 2008; 59: 195 | [20] | Ma Z S, Zhou Y C, Long S G, Lu C.Int J Plasticity, 2012; 34: 1 | [21] | Li X H, Chen G Q, Han J C, Meng S H.Aerosp Mater Technol, 2005; 35(6): 13 | [21] | (李晓海, 陈贵清, 韩杰才, 孟松鹤. 宇航材料工艺, 2005; 35(6): 13) | [22] | Ma L, Sun Y, He X D.Rare Met Mater Eng, 2008; 37: 325 | [23] | Movchan B A, Demchishin A V.Phys Met Metallogr-USSR, 1969; 28: 83 | [24] | Groves J F.PhD Dissertation, University of Virginia, 1998 | [25] | Jankowski A F.Nanostruct Mater, 1995; 6: 179 | [26] | Zhang D M, Chen G Q, Meng S H, Qu W, Han J C.Rare Met Mater Eng, 2007; 6: 973 | [26] | (章德铭, 陈贵清, 孟松鹤, 曲伟, 韩杰才. 稀有金属材料与工程, 2007; 6: 973) | [27] | Zhang Y, Chu W Y, Wang Y B, Qiao L J, Xiao J M, Wang Z H, Bai C L.Acta Metall Sin, 1995; 31: 191 | [27] | (张跃, 褚武扬, 王燕斌, 乔利杰, 肖纪美, 王中怀, 白春礼. 金属学报, 1995; 31: 191) | [28] | Shen Z Y, Huang G H, He L M, Mu R D, Chang Z D.Chin J Mater Res, 2014; 4: 314 | [28] | (申造宇, 黄光宏, 何利民, 牟仁德, 常振东.材料研究学报. 2014; 4: 314) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|