Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 945-955    DOI: 10.11900/0412.1961.2015.00635
Orginal Article Current Issue | Archive | Adv Search |
QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL
Jintao SHI(),Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2016, 52(8): 945-955.

Download:  HTML  PDF(2492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Advanced material processing techniques have been successfully used to produce metals or alloys with submicro- or nano-sized grain structures with some possibly required harsh working environment that limits their industrial application. Cryogenic deformation might promote extensively severe deformation or distortion of metals or alloys (such as Al or aluminium alloys, Cu or copper alloys, Ti, Zr, etc.) so as to accumulate higher deformation energy (e.g., higher defect density) for the depression of the (dynamic) recovery, which will contribute to the microstructure refinement. Presently, the macro-/micro-structural evolution, the martensitic transformation as well as its effect on the mechanical property during the cryogenic and room temperature rolling of 304 metastable austenitic stainless steel were studied. It shows that the cryogenic rolling can effectively accelerate the martensitic transformation, e.g., after 20% cryogenic rolling the volume fraction of the transformed martensitic is equal to that after 50% room temperature rolling, and finally the cryogenic rolling can promote the complete martensitic transformation. Also the through-thickness uniformity of the martensitic transformation after cryogenic rolling is significantly better than that of the room temperature rolled one, which can help to improve the through-thickness performance uniformity. It is found that the deformation mechanisms are different for cryogenic and room temperature rolling metastable austenitic stainless steel: the martensitic transformation and its deformation occur in the former while austenitic deformation in the latter. The cryogenic rolling can quickly induce higher hardness than that of the room temperature rolled one, and the hardness tends to be equal finally because of the minimized dislocation density difference between these two rolled steels. TEM results indicate that the orientation relationship between the transformed martensite and the old austenite in the cryogenic and room temperature rolled sheets can still keep the K-S (Kurduumov-Sachs) relationship.

Key words:  austenitic stainless steel      cryogenic rolling      martensite transformation      XRD      microstructure     
Received:  09 December 2015     
Fund: Supported by National Natural Science Foundation of China (No.51401016), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, and State Key Laboratory for Advanced Metals and Materials of China (No.2011Z-05)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00635     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/945

Fig.1  XRD spectra of the cryogenic rolled (CR) (a) and room temperature rolled (RTR) (b) 304 stainless steels with different reductions (γ—austenite, M—martensite)
Fig.2  Volume fraction of martensite (a) and the hardness (b) of the CR and RTR 304 stainless steels with different reductions
Position 20% 40%
CR RTR CR RTR
RP 80.64 24.38 82.69 62.69
1/4T 77.10 17.04 - -
1/2T 74.14 13.18 81.77 33.41
Table 1  Volume fraction of martensite of the CR and RTR 304 stainless steels with reductions of 20% and 40% at different thicknesses(%)
Fig.3  OM (a) and EBSD (b) images of 304 stainless steels quenched at 1100 ℃ for 1 h (The experiment parameter of EBSD: area 1299 μm×977 μm, step 2 μm)
Fig.4  EBSD images of the CR (a) and RTR (b) 304 stainless steels with 10% reduction (The experiment parameter of EBSD: area 654 μm×492 μm and step 2 μm for Fig.4a, area 1299 μm×977 μm and step 2 μm for Fig.4b. Red and blue colors indicate the austenite and martensite, respectively)
Fig.5  OM images of the CR (a~c) and RTR (d~f) 304 stainless steels with reductions of 20% (a, d), 40% (b, e) and 50% (c, f)
Fig.6  TEM images and corresponding SAED patters (insets) of the RTR (a, c, e, g) and CR (b, d, f, h) 304 stainless steels with reductions of 20% (a, b, g, h), 40% (c, d) and 80% (e, f)
Fig.7  Volume fraction of martensite (a) and the microhardness (b) of the CR and RTR 304 stainless steels with 50% reduction after annealing at different temperatures
Fig.8  OM images of the CR (a, c, e, g) and RTR (b, d, f, h) 304 stainless steels with 50% reduction after annealing at 500 ℃ (a, b), 600 ℃ (c, d), 900 ℃ (e, f) and 950 ℃ (g, h) (Dash lines in Figs.8e and f indicate the original austenitic boundaries)
Fig.9  SEM images of the CR (a, b) and RTR (c) 304 stainless steels with 50% reduction after annealed at 900 ℃ (Dash lines in Figs.9a and c indicate the original austenitic boundaries. Fig.9b is a high magnified image of the area A in Fig.9a, and the arrow in Fig.9b indicates the recrystallization grain)
Fig.10  TEM images and corresponding SAED patters (insets) of the RTR (a) and CR (b) 304 stainless steels with 40% reduction
Fig.11  TEM image of the CR 304 stainless steel with 50% reduction (Circle indicates the broken of the martensite)
[1] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[2] Valiev R , Kozlov E , Ivanov Y , Lian , Nazarov A , Baudelet B.Acta Metall Mater, 1994; 42: 2467
[3] Furukawa M, Horita Z, Nemoto M, Valiev R Z, Langdon T G.Acta Mater, 1996; 44: 4619
[4] Neishi K, Horita Z, Langdon T G.Mater Sci Eng, 2002; A54: 325
[5] Lee S, Utsunomiya A, Akamatsu K, Neishi K, Furukawa M, Horita Z, Langdon T G.Acta Mater, 2002; 50: 553
[6] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G.Scr Mater, 1998; 39: 1221
[7] Tsuji N, Saito Y, Utsunomiya H, Tanigawa S.Scr Mater, 1999; 40: 795
[8] Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893
[9] Abdulov R Z, Valiev R Z, Krasilnikov N A.J Mater Sci Lett, 1990; 9: 1445
[10] Valiev R Z, Ivanisenko Y V, Rauch E F, Baudelet B.Acta Mater, 1996; 44: 4705
[11] Lee Y B, Shin D H, Nam W J.J Mater Sci, 2005; 40: 797
[12] Weiss M, Taylor A S, Hodgson P D, Stanford N.Acta Mater, 2013; 61: 5278
[13] Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912
[14] Zherebtsov S V, DyakonovG S,Salem A A , Sokolenko V I,Salishchev G A , Semiatin S L.Acta Mater, 2012; 61: 1167
[15] Lee Y B, Shin D H, Park K T, Nam W J.Scr Mater, 2004; 51: 355
[16] Forouzan F, Najafizadeh A, Kermanpur A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334
[17] Das A, Chakraborti P C, Tarafder S, Bhadeshia H K D H.Mater Sci Technol, 2011; 27: 366
[18] Lu S HY.Stainless Steel.Beijing: Atomic Energy Press, 1995: 256
[18] (陆世英. 不锈钢. 北京:原子能出版社, 1995: 256)
[19] Chen D H.Properties and Microstructure of Stainless Steel. Beijing: China Machine Press, 1997: 27
[19] (陈德和. 不锈钢的性能与组织. 北京: 机械工业出版社, 1997: 27)
[20] Fischer F D, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T.Int J Plast, 2000; 16: 723
[21] Dan W J, Li S H, Zhang W G, Lin Z Q.Mater Des, 2008; 29: 604
[22] Maki T.Curr Opin Solid State Mater Sci, 1997; 2: 290
[23] Padilha A F, Plaut R L, Rios P R.ISIJ Int, 2003; 43: 135
[24] Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619
[25] Rocha M R, Oliveira C A.Mater Sci Eng, 2009; A517: 281
[26] Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng, 1989; A114: L11
[27] Das A, Tarafder S.Int J Plast, 2009; 25: 2222
[28] Lebedev A A, Kosarchuk V V.Int J Plast, 2000; 16: 749
[29] Sabooni S, Karimzadeh F, Enayati M H, Ngan A H W.Mater Sci Eng, 2015; A636: 221
[30] Hu G, Xu C C, Zhang X S.J Huanggang Normal Univ, 2002; 22(3): 17
[30] (胡钢, 许淳淳, 张新生. 黄冈师范学院学报, 2002; 22(3): 17)
[31] Roy B, Kumar R, Das J.Mater Sci Eng, 2015; A631: 241
[32] Moser N H, Gross T S, Korkolis Y P.Metall Mater Trasn, 2014; 45A: 4891
[33] Cullity B D, Stock S R.Elements of X-Ray Diffraction. 3rd Ed .New Jersey: Prentice Hall, 2001: 1
[34] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[35] Huang X M, Xie T.Material Analysis Test Method. Beijing: National Defense Industry Press, 2008: 206
[35] (黄新民, 解挺. 材料分析测试方法. 北京: 国防工业出版社, 2008: 206)
[36] Shintani T, Murata Y.Acta Mater, 2011; 59: 4314
[37] Yang Z Y, Wang J, Chen J Y.Trans Mater Heat Treat, 2008; 29(1): 98
[37] (杨卓越, 王建, 陈嘉砚. 材料热处理学报, 2008; 29(1): 98)
[38] Olson G B, Cohen M.Metall Trans, 1975; 6A: 791
[39] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[40] H?nninen H E.Int Mater Rev, 1979; 24: 85
[41] Sato A, Soma K, Mori T.Acta Metall, 1982; 30: 1901
[42] Seetharaman V, Krishnan R.J Mater Sci, 1981; 16: 523
[43] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158
[44] Curtze S, Kuokkala V T.Acta Mater, 2010; 58: 5129
[45] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[46] Yang G, Huang C X, Wu S, Zhang Z.Acta Metall Sin, 2009; 45: 906
[46] (杨钢, 黄崇湘, 吴世丁, 张哲峰. 金属学报, 2009; 45: 906)
[47] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T.Acta Mater, 2003; 51: 1789
[48] Xu Z Z.Martensite Transformation and Martensite .Beijing: China Science Press, 1980: 1
[48] (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 1)
[49] Xu X.Structure and Application of Steel. Chongqing: Sichuan People's Publishing House, 1981: 132
[49] (徐修炎. 钢的组织形态及其应用. 重庆: 四川人民出版社, 1981: 132)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!