|
|
QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL |
Jintao SHI( ),Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2016, 52(8): 945-955.
|
|
Abstract Advanced material processing techniques have been successfully used to produce metals or alloys with submicro- or nano-sized grain structures with some possibly required harsh working environment that limits their industrial application. Cryogenic deformation might promote extensively severe deformation or distortion of metals or alloys (such as Al or aluminium alloys, Cu or copper alloys, Ti, Zr, etc.) so as to accumulate higher deformation energy (e.g., higher defect density) for the depression of the (dynamic) recovery, which will contribute to the microstructure refinement. Presently, the macro-/micro-structural evolution, the martensitic transformation as well as its effect on the mechanical property during the cryogenic and room temperature rolling of 304 metastable austenitic stainless steel were studied. It shows that the cryogenic rolling can effectively accelerate the martensitic transformation, e.g., after 20% cryogenic rolling the volume fraction of the transformed martensitic is equal to that after 50% room temperature rolling, and finally the cryogenic rolling can promote the complete martensitic transformation. Also the through-thickness uniformity of the martensitic transformation after cryogenic rolling is significantly better than that of the room temperature rolled one, which can help to improve the through-thickness performance uniformity. It is found that the deformation mechanisms are different for cryogenic and room temperature rolling metastable austenitic stainless steel: the martensitic transformation and its deformation occur in the former while austenitic deformation in the latter. The cryogenic rolling can quickly induce higher hardness than that of the room temperature rolled one, and the hardness tends to be equal finally because of the minimized dislocation density difference between these two rolled steels. TEM results indicate that the orientation relationship between the transformed martensite and the old austenite in the cryogenic and room temperature rolled sheets can still keep the K-S (Kurduumov-Sachs) relationship.
|
Received: 09 December 2015
|
Fund: Supported by National Natural Science Foundation of China (No.51401016), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, and State Key Laboratory for Advanced Metals and Materials of China (No.2011Z-05) |
[1] | Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35 | [2] | Valiev R , Kozlov E , Ivanov Y , Lian , Nazarov A , Baudelet B.Acta Metall Mater, 1994; 42: 2467 | [3] | Furukawa M, Horita Z, Nemoto M, Valiev R Z, Langdon T G.Acta Mater, 1996; 44: 4619 | [4] | Neishi K, Horita Z, Langdon T G.Mater Sci Eng, 2002; A54: 325 | [5] | Lee S, Utsunomiya A, Akamatsu K, Neishi K, Furukawa M, Horita Z, Langdon T G.Acta Mater, 2002; 50: 553 | [6] | Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G.Scr Mater, 1998; 39: 1221 | [7] | Tsuji N, Saito Y, Utsunomiya H, Tanigawa S.Scr Mater, 1999; 40: 795 | [8] | Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893 | [9] | Abdulov R Z, Valiev R Z, Krasilnikov N A.J Mater Sci Lett, 1990; 9: 1445 | [10] | Valiev R Z, Ivanisenko Y V, Rauch E F, Baudelet B.Acta Mater, 1996; 44: 4705 | [11] | Lee Y B, Shin D H, Nam W J.J Mater Sci, 2005; 40: 797 | [12] | Weiss M, Taylor A S, Hodgson P D, Stanford N.Acta Mater, 2013; 61: 5278 | [13] | Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912 | [14] | Zherebtsov S V, DyakonovG S,Salem A A , Sokolenko V I,Salishchev G A , Semiatin S L.Acta Mater, 2012; 61: 1167 | [15] | Lee Y B, Shin D H, Park K T, Nam W J.Scr Mater, 2004; 51: 355 | [16] | Forouzan F, Najafizadeh A, Kermanpur A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334 | [17] | Das A, Chakraborti P C, Tarafder S, Bhadeshia H K D H.Mater Sci Technol, 2011; 27: 366 | [18] | Lu S HY.Stainless Steel.Beijing: Atomic Energy Press, 1995: 256 | [18] | (陆世英. 不锈钢. 北京:原子能出版社, 1995: 256) | [19] | Chen D H.Properties and Microstructure of Stainless Steel. Beijing: China Machine Press, 1997: 27 | [19] | (陈德和. 不锈钢的性能与组织. 北京: 机械工业出版社, 1997: 27) | [20] | Fischer F D, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T.Int J Plast, 2000; 16: 723 | [21] | Dan W J, Li S H, Zhang W G, Lin Z Q.Mater Des, 2008; 29: 604 | [22] | Maki T.Curr Opin Solid State Mater Sci, 1997; 2: 290 | [23] | Padilha A F, Plaut R L, Rios P R.ISIJ Int, 2003; 43: 135 | [24] | Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619 | [25] | Rocha M R, Oliveira C A.Mater Sci Eng, 2009; A517: 281 | [26] | Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng, 1989; A114: L11 | [27] | Das A, Tarafder S.Int J Plast, 2009; 25: 2222 | [28] | Lebedev A A, Kosarchuk V V.Int J Plast, 2000; 16: 749 | [29] | Sabooni S, Karimzadeh F, Enayati M H, Ngan A H W.Mater Sci Eng, 2015; A636: 221 | [30] | Hu G, Xu C C, Zhang X S.J Huanggang Normal Univ, 2002; 22(3): 17 | [30] | (胡钢, 许淳淳, 张新生. 黄冈师范学院学报, 2002; 22(3): 17) | [31] | Roy B, Kumar R, Das J.Mater Sci Eng, 2015; A631: 241 | [32] | Moser N H, Gross T S, Korkolis Y P.Metall Mater Trasn, 2014; 45A: 4891 | [33] | Cullity B D, Stock S R.Elements of X-Ray Diffraction. 3rd Ed .New Jersey: Prentice Hall, 2001: 1 | [34] | De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445 | [35] | Huang X M, Xie T.Material Analysis Test Method. Beijing: National Defense Industry Press, 2008: 206 | [35] | (黄新民, 解挺. 材料分析测试方法. 北京: 国防工业出版社, 2008: 206) | [36] | Shintani T, Murata Y.Acta Mater, 2011; 59: 4314 | [37] | Yang Z Y, Wang J, Chen J Y.Trans Mater Heat Treat, 2008; 29(1): 98 | [37] | (杨卓越, 王建, 陈嘉砚. 材料热处理学报, 2008; 29(1): 98) | [38] | Olson G B, Cohen M.Metall Trans, 1975; 6A: 791 | [39] | Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868 | [40] | H?nninen H E.Int Mater Rev, 1979; 24: 85 | [41] | Sato A, Soma K, Mori T.Acta Metall, 1982; 30: 1901 | [42] | Seetharaman V, Krishnan R.J Mater Sci, 1981; 16: 523 | [43] | Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158 | [44] | Curtze S, Kuokkala V T.Acta Mater, 2010; 58: 5129 | [45] | Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868 | [46] | Yang G, Huang C X, Wu S, Zhang Z.Acta Metall Sin, 2009; 45: 906 | [46] | (杨钢, 黄崇湘, 吴世丁, 张哲峰. 金属学报, 2009; 45: 906) | [47] | Morito S, Tanaka H, Konishi R, Furuhara T, Maki T.Acta Mater, 2003; 51: 1789 | [48] | Xu Z Z.Martensite Transformation and Martensite .Beijing: China Science Press, 1980: 1 | [48] | (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 1) | [49] | Xu X.Structure and Application of Steel. Chongqing: Sichuan People's Publishing House, 1981: 132 | [49] | (徐修炎. 钢的组织形态及其应用. 重庆: 四川人民出版社, 1981: 132) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|