Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 956-964    DOI: 10.11900/0412.1961.2015.00547
Orginal Article Current Issue | Archive | Adv Search |
COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL
Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN(),Huiguang GUO
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL. Acta Metall Sin, 2016, 52(8): 956-964.

Download:  HTML  PDF(1408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The higher strength requirement of heavy generator retaining rings made of Mn18Cr18N austenitic stainless steel can be obtained by cold deformation strengthening. However, the yield ratio of Mn18Cr18N austenitic stainless steel is close to 1 gradually during the unidirectional tensile deformation, which will limit the unidirectional tensile deformation of cold deformation strengthening. In order to investigate the cold deformation strengthening by complex loading paths of Mn18Cr18N austenitic stainless steel, compression-tensile deformation behavior of Mn18Cr18N austenite stainless steel at room temperature was investigated by compression and tensile consecutive loading deformation experiments with the first compressive reduction range of 0%~40% and the second tensile range to fracture. Microstructure evolution, deformation dislocations, fracture behavior and mechanisms have been analyzed by OM, SEM and TEM. The results indicate that the subsequent tensile yield stress and the maximum tensile stress at the uniform plastic deformation stage, the reduction of cross sectional area and elongation increase at first and then decrease with the increase of compressive deformation. When the compressive deformation increases up to the critical reduction of 25%, the subsequent tensile yield stress and the maximum tensile stress reach up to the maximum values of 1039.97 and 1439.20 MPa respectively, and the reduction of cross sectional area and the elongation also reach up to the maximum values of 68.99% and 73.80% respectively. When the compressive deformation is less than the critical reduction, appearance of fractures shows the cup-cone shaped macroscopic fracture profiles, the dimpled microscopic fracture surfaces and the elongated grains. When the compressive deformation is greater than the critical reduction, fractures morphology is distinguished by the flat macroscopic fracture profiles, the crystalline microscopic fracture surfaces and the equiaxed grains with a lot twin structures. Several dislocation configurations with different density forms by dislocation slip when the compressive reduction is lower. Dislocation pile-up can be observed in the subsequent broken tensile specimen. Cross twins emerge in the specimen compressed up to 35% reduction. Twins with high density dislocation tangles arrange in parallel in the subsequent broken tensile specimen.

Key words:  Mn18Cr18N steel      compression and tensile consecutive loading deformation      mechanical behavior      fracture morphology      microstructure     
Received:  26 October 2015     
Fund: Supported by National Natural Science Foundation of China (No.51575372), Natural Science Foundation of Shanxi Province (No.2014011015-4) and Science and Technology Research Plan (Industrial) Project of Shanxi Province (No.201603D121006-2)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00547     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/956

Fig.1  Schematic of specimen for compression-tensile test (unit: mm, ?—diameter, M—diameter of thread)
Fig.2  Original microstructure of Mn18Cr18N austenite stainless steel
Fig.3  XRD spectra of Mn18Cr18N austenite stainless steel specimens at 0 and 40% compression reduction
Fig.4  Compression-tensile true stress-strain curves of Mn18Cr18N austenite stainless steel under different compressive reductions
Fig.5  Typical compression-tensile strain (a) and stress (b) variation with compression reductions of Mn18Cr18N austenite stainless steel
Fig.6  Yield-strength ratio variation with compression reduction of Mn18Cr18N austenite stainless steel
Fig.7  Influence of compression reduction on reduction of cross-sectional area and elongation of Mn18Cr18N austenite stainless steel
Fig.8  Morphologies of fracture macrostructure (longitudinal section) of Mn18Cr18N austenite stainless steel for compression-tensile test at the compression reductions of 0% (a), 10% (b), 15% (c), 20% (d), 25% (e), 30% (f), 35% (g) and 40% (h)
Fig.9  Fracture SEM images of Mn18Cr18N austenite stainless steel for compression-tensile test at the compression reductions of 0% (a), 15% (b), 25% (c), 30% (d), 35% (e) and 40% (f)
Fig.10  OM images of microstructures in Mn18Cr18N austenite stainless steel for compression reductions of 15% (a), 25% (b), 35% (c) and 40% (d)
Fig.11  OM images of fracture microstructure (longitudinal section) of Mn18Cr18N austenite stainless steel for compression-tensile test at the compression reductions of 15% (a), 25% (b), 35% (c) and 40% (d)
Fig.12  TEM images of Mn18Cr18N austenite stainless steel under different deformation conditions(a) 15% compressive reduction (b) tensile to fracture after 15% compressive reduction(c) 35% compressive reduction (d) tensile to fracture after 35% compressive reduction
[1] Gavriljuk V G, Berns H.High Nitrogen Steels: Structures, Properties, Manufacture, Apllicantions. Berlin: Springer, 1999: 271
[2] Wang Z H, Fu W T, Sun S H, Lv Z Q, Zhang W H.J. Mater Sci Technol, 2010; 26: 798
[3] Lee T H, Oh C S, Kim S J, Takaki S.Acta Mater, 2007; 55: 3649
[4] Stein G, Hucklenbroich I, Feichtinger H. Mater Sci Forum, 1999; 318~320: 151
[5] Mao G G.Electric Power, 2006; 39(7): 15
[5] (毛国光. 中国电力, 2006; 39(7): 15)
[6] Jiang Z H, Liu X H, Zhao L.Special Steel, 1999; 20(special issue): 82
[6] (姜周华, 刘喜海, 赵林. 特殊钢, 1999; 20(特刊): 82)
[7] Peng X H, Gao Z H, Ma M T, Yan Z X.Acta Metall Sin, 1993; 29: 429
[7] (彭向和, 高芝晖, 马鸣图, 颜在先. 金属学报, 1993; 29: 429)
[8] Wang Y Q, Chang T, Shi Y J.J Southeast Univ (Nat Sci Ed), 2012; 42: 1175
[8] (王元清, 常婷, 石永久. 东南大学学报(自然科学版), 2012; 42: 1175)
[9] Shi G, Wang F, Dai G X, Wang Y Q, Shi Y J.J Southeast Univ (Nat Sci Ed), 2011; 41: 1259
[9] (施刚, 王飞, 戴国欣, 王元清, 石永久. 东南大学学报(自然科学版), 2011; 41: 1259)
[10] Dusicka P, Itani A M, Buckle I G.J Constr Steel Res, 2007; 63(2): 156
[11] Wu Q, Chen Y Y, Zhou F.J Build Struct, 2014; 35(2): 89
[11] (吴旗, 陈以一, 周锋. 建筑结构学报, 2014; 35(2): 89)
[12] Soppa E A, Kohler C, Roos E.Mater Sci Eng, 2014; A597: 128
[13] Mishra A, Chellapandi P, Kumar R S, Sasikala G.Trans Indian Inst Met, 2015; 68: 623
[14] Eisenmeier G, Holzwarth B, Hoppel H W, Mughrabi H.Mater Sci Eng, 2001; A319: 578
[15] Yin S M, Yang H J, Li S X, Wu S D, Yang F.Scr Mater, 2008; 58: 751
[16] Mo D F, He G Q, Zhu Z Y, Liu X S, Zhang W H,Acta Metall Sin, 2009; 45: 861
[16] (莫德峰, 何国球, 朱正宇, 刘晓山, 张卫华. 金属学报, 2009; 45: 861)
[17] Zhang K S, Dong S H, Xu L B, Huang S H, Yuan Q P.Chin J Solid Mech, 2013; 34: 450
[17] (张克实, 董书惠, 许凌波, 黄世鸿, 袁秋平. 固体力学学报, 2013; 34: 450)
[18] Shin J H, Lee J W.Mater Charact, 2014; 91(5): 19
[19] Kocks U F,Philos Mag, 1966; 13: 541
[20] Fletham P, Meakin J D.Acta Metall, 1957; 5: 555
[21] Argon A S.Strengthening Mechanisms in Crystal Plasticity. New York: Oxford University Press, 2008: 283
[22] Wang S T, Yang K, Shan Y Y, Li L F.Acta Metall Sin, 2007; 43: 713
[22] (王松涛, 杨柯, 单以银, 李来风. 金属学报, 2007; 43: 713)
[23] Lou C, Zhang X Y, Wang R H, Duan G L, Liu Q.Acta Metall Sin, 2013; 49: 291
[23] (娄超, 张喜燕, 王润红, 段高林, 刘庆. 金属学报, 2013; 49: 291)
[24] Wang Y Y, Sun X, Wang Y D, Hu X H, Zbib H M.Mater Sci Eng, 2014; A607: 206
[25] Shi D K, Liu J H.Acta Metall Sin, 1989; 25: 282
[25] (石德珂, 刘军海. 金属学报, 1989; 25: 282)
[26] Chen Y Y, Zheng Z Q, Cai B, Xu J Q, She L J, Li H.Rare Met Mater Eng, 2011; 40: 1926
[26] (陈圆圆, 郑子樵, 蔡彪, 徐建秋, 佘玲娟, 李海. 稀有金属材料与工程, 2011, 40: 1926)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!