|
|
COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL |
Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN( ),Huiguang GUO |
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
Cite this article:
Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL. Acta Metall Sin, 2016, 52(8): 956-964.
|
Abstract The higher strength requirement of heavy generator retaining rings made of Mn18Cr18N austenitic stainless steel can be obtained by cold deformation strengthening. However, the yield ratio of Mn18Cr18N austenitic stainless steel is close to 1 gradually during the unidirectional tensile deformation, which will limit the unidirectional tensile deformation of cold deformation strengthening. In order to investigate the cold deformation strengthening by complex loading paths of Mn18Cr18N austenitic stainless steel, compression-tensile deformation behavior of Mn18Cr18N austenite stainless steel at room temperature was investigated by compression and tensile consecutive loading deformation experiments with the first compressive reduction range of 0%~40% and the second tensile range to fracture. Microstructure evolution, deformation dislocations, fracture behavior and mechanisms have been analyzed by OM, SEM and TEM. The results indicate that the subsequent tensile yield stress and the maximum tensile stress at the uniform plastic deformation stage, the reduction of cross sectional area and elongation increase at first and then decrease with the increase of compressive deformation. When the compressive deformation increases up to the critical reduction of 25%, the subsequent tensile yield stress and the maximum tensile stress reach up to the maximum values of 1039.97 and 1439.20 MPa respectively, and the reduction of cross sectional area and the elongation also reach up to the maximum values of 68.99% and 73.80% respectively. When the compressive deformation is less than the critical reduction, appearance of fractures shows the cup-cone shaped macroscopic fracture profiles, the dimpled microscopic fracture surfaces and the elongated grains. When the compressive deformation is greater than the critical reduction, fractures morphology is distinguished by the flat macroscopic fracture profiles, the crystalline microscopic fracture surfaces and the equiaxed grains with a lot twin structures. Several dislocation configurations with different density forms by dislocation slip when the compressive reduction is lower. Dislocation pile-up can be observed in the subsequent broken tensile specimen. Cross twins emerge in the specimen compressed up to 35% reduction. Twins with high density dislocation tangles arrange in parallel in the subsequent broken tensile specimen.
|
Received: 26 October 2015
|
Fund: Supported by National Natural Science Foundation of China (No.51575372), Natural Science Foundation of Shanxi Province (No.2014011015-4) and Science and Technology Research Plan (Industrial) Project of Shanxi Province (No.201603D121006-2) |
[1] | Gavriljuk V G, Berns H.High Nitrogen Steels: Structures, Properties, Manufacture, Apllicantions. Berlin: Springer, 1999: 271 | [2] | Wang Z H, Fu W T, Sun S H, Lv Z Q, Zhang W H.J. Mater Sci Technol, 2010; 26: 798 | [3] | Lee T H, Oh C S, Kim S J, Takaki S.Acta Mater, 2007; 55: 3649 | [4] | Stein G, Hucklenbroich I, Feichtinger H. Mater Sci Forum, 1999; 318~320: 151 | [5] | Mao G G.Electric Power, 2006; 39(7): 15 | [5] | (毛国光. 中国电力, 2006; 39(7): 15) | [6] | Jiang Z H, Liu X H, Zhao L.Special Steel, 1999; 20(special issue): 82 | [6] | (姜周华, 刘喜海, 赵林. 特殊钢, 1999; 20(特刊): 82) | [7] | Peng X H, Gao Z H, Ma M T, Yan Z X.Acta Metall Sin, 1993; 29: 429 | [7] | (彭向和, 高芝晖, 马鸣图, 颜在先. 金属学报, 1993; 29: 429) | [8] | Wang Y Q, Chang T, Shi Y J.J Southeast Univ (Nat Sci Ed), 2012; 42: 1175 | [8] | (王元清, 常婷, 石永久. 东南大学学报(自然科学版), 2012; 42: 1175) | [9] | Shi G, Wang F, Dai G X, Wang Y Q, Shi Y J.J Southeast Univ (Nat Sci Ed), 2011; 41: 1259 | [9] | (施刚, 王飞, 戴国欣, 王元清, 石永久. 东南大学学报(自然科学版), 2011; 41: 1259) | [10] | Dusicka P, Itani A M, Buckle I G.J Constr Steel Res, 2007; 63(2): 156 | [11] | Wu Q, Chen Y Y, Zhou F.J Build Struct, 2014; 35(2): 89 | [11] | (吴旗, 陈以一, 周锋. 建筑结构学报, 2014; 35(2): 89) | [12] | Soppa E A, Kohler C, Roos E.Mater Sci Eng, 2014; A597: 128 | [13] | Mishra A, Chellapandi P, Kumar R S, Sasikala G.Trans Indian Inst Met, 2015; 68: 623 | [14] | Eisenmeier G, Holzwarth B, Hoppel H W, Mughrabi H.Mater Sci Eng, 2001; A319: 578 | [15] | Yin S M, Yang H J, Li S X, Wu S D, Yang F.Scr Mater, 2008; 58: 751 | [16] | Mo D F, He G Q, Zhu Z Y, Liu X S, Zhang W H,Acta Metall Sin, 2009; 45: 861 | [16] | (莫德峰, 何国球, 朱正宇, 刘晓山, 张卫华. 金属学报, 2009; 45: 861) | [17] | Zhang K S, Dong S H, Xu L B, Huang S H, Yuan Q P.Chin J Solid Mech, 2013; 34: 450 | [17] | (张克实, 董书惠, 许凌波, 黄世鸿, 袁秋平. 固体力学学报, 2013; 34: 450) | [18] | Shin J H, Lee J W.Mater Charact, 2014; 91(5): 19 | [19] | Kocks U F,Philos Mag, 1966; 13: 541 | [20] | Fletham P, Meakin J D.Acta Metall, 1957; 5: 555 | [21] | Argon A S.Strengthening Mechanisms in Crystal Plasticity. New York: Oxford University Press, 2008: 283 | [22] | Wang S T, Yang K, Shan Y Y, Li L F.Acta Metall Sin, 2007; 43: 713 | [22] | (王松涛, 杨柯, 单以银, 李来风. 金属学报, 2007; 43: 713) | [23] | Lou C, Zhang X Y, Wang R H, Duan G L, Liu Q.Acta Metall Sin, 2013; 49: 291 | [23] | (娄超, 张喜燕, 王润红, 段高林, 刘庆. 金属学报, 2013; 49: 291) | [24] | Wang Y Y, Sun X, Wang Y D, Hu X H, Zbib H M.Mater Sci Eng, 2014; A607: 206 | [25] | Shi D K, Liu J H.Acta Metall Sin, 1989; 25: 282 | [25] | (石德珂, 刘军海. 金属学报, 1989; 25: 282) | [26] | Chen Y Y, Zheng Z Q, Cai B, Xu J Q, She L J, Li H.Rare Met Mater Eng, 2011; 40: 1926 | [26] | (陈圆圆, 郑子樵, 蔡彪, 徐建秋, 佘玲娟, 李海. 稀有金属材料与工程, 2011, 40: 1926) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|