|
|
MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY |
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU( ) |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2016, 52(7): 875-882.
|
|
Abstract Ni-based single-crystal superalloy DD5 has excellent high temperature properties, which is the preferred raw material for aero-engine turbine blade in recent year. In this research, DD5 superalloy was brazed by different contents of Ni-Co-Cr-W-B+DD99 mixed powder filler alloy. The microstructure evolution and interfacial formation mechanism of DD5 superalloy brazing joint were analyzed by SEM and EPMA. The mechanical properties of joint after solid solution treatment and aging treatment were tested. The results show that γ-Ni primary phase formed firstly in the Ni-Co-Cr-W-B/DD99 interface during the brazing process, and then B element segregated and precipitated to fine granular M3B2 type boride. The residual liquid phase solidified and formed lastly to the M3B2 phase, γ+γ′ eutectic phase and γ-Ni+Ni3B+CrB eutectic phase during cooling. With increasing the ratio of DD99 in mixed powder filler alloy, the low melting point eutectic phase and borides in the joint decrease and the uniformity of composition and microstructure of joint improve. When the ratio of DD99 increased to 70% (mass fraction) in the mixed powder filler alloy, it can be observed that element of B diffused to DD99 additive powder which result ed in the decrease of low melting point eutectic phases and brittle compounds. The high temperature tensile properties of joint is 1010 MPa at 870 ℃.
|
Received: 03 December 2015
|
Fund: Supported by National Natural Science Foundation of China (Nos.51401210 and 51331005) and High Technology Research and Development Program of China (No.2014AA041701) |
[1] | Zhang X L, Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2012; 48: 1229 | [1] | (张晓丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229) | [2] | Tung S K, Lim L C, Lai M O.Scr Mater, 1996; 34: 763 | [3] | Huang X, Miglietti W.J Eng Gas Turb Power, 2012; 134: 010801 | [4] | Chen Y, Zhang K, Huang J, Hosseini S R E, Li Z G.Mater Des, 2016; 90: 586 | [5] | Zhang D X, Liu D S, Zhu X P.In: Sung W P, Chen R eds., 3rd Int Conf Frontiers of Manufacturing and Design Science, Hong Kong: Trans Tech Publications LTD, 2013: 64 | [6] | Liu T, Yan F, Liu S, Li R Y, Wang C M, Hu X Y.Opt Laser Technol, 2016; 80(2): 56 | [7] | Chelladurai A M, Gopal K A, Murugan S, Albert S K, Venugopal S, Jayakumar T.Sci Technol Weld Joining, 2015; 20: 578 | [8] | Ma T J, Yan M, Yang X W, Li W Y, Chao Y J.Mater Des, 2015; 85: 613 | [9] | Du S G, Wang X F, Gao M.Acta Metall Sin, 2015; 51: 951 | [9] | (杜随更, 王喜锋, 高漫. 金属学报, 2015; 51: 951) | [10] | Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305 | [11] | Philips N R, Levi C G, Evans A G.Metall Mater Trans, 2008; 39A: 142 | [12] | Pill J J, Kang C S.Mater Trans JIM, 1997; 38: 886 | [13] | Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.Scr Mater, 2003; 48: 1283 | [14] | Khakian M, Nategh S, Mirdamadi S.J Alloys Compd, 2015; 653: 386 | [15] | Liu A N, Zhai Q Y, Kang W J, Xu J F, Zhang J, Ruan C Y, Wang W.Hot Work Technol, 2014; 43(17): 29 | [15] | (刘安娜, 翟秋亚, 康文军, 徐锦锋, 张军, 阮成勇, 王炜. 热加工工艺, 2014; 43(17): 29) | [16] | Huang X, Au P.J Eng Gas Turb Power, 2008; 130: 032101 | [17] | Henhoeffer T, Huang X, Yand S, Au P, Nagy D.Mater Sci Technol Lond, 2010; 26: 431 | [18] | Henhoeffer T, Huang X, Au P.J Eng Gas Turb Power, 2011; 133: 092101 | [19] | Guo J T.Material Science and Engineering for Superalloys (II). Beijing: Science Press, 2008: 452 | [19] | (郭建亭. 高温合金材料学(中). 北京: 科学出版社, 2008: 452) | [20] | Zhuang H S, Lugscheider E. High Temperature Brazing.Beijing: National Defence Industry Press, 1989: 46 | [20] | (庄鸿寿, Lugscheider E.高温钎焊. 北京: 国防工业出版社, 1989: 46) | [21] | Li X H, Zhong Q P, Cao C X.J Aeron Mater, 2003; 23(12): 10 | [21] | (李晓红, 钟群鹏, 曹春晓. 航空材料学报, 2003; 23(12): 10) | [22] | Li X H, Xiong H P, Zhang X J.Joining Technologies of Advanced Aeronautical Materials. Beijing: National Defense Industry Press, 2012: 28 | [22] | (李晓红, 熊华平, 张学军. 先进航空材料焊接技术. 北京: 国防工业出版社, 2012: 28) | [23] | Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Philos Mag, 2014; 94: 1219 | [24] | Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.J Mater Sci Technol, 2015; 31: 129 | [25] | Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793 | [26] | Liu J D.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007 | [26] | (刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007) | [27] | Sun Y, Liu J D, Liu Z M, Yang J X, Li J G, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 1581 | [27] | (孙元, 刘纪德, 刘忠明, 杨金侠, 李金国, 金涛, 孙晓峰. 金属学报, 2013; 49: 1581) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|