Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 866-874    DOI: 10.11900/0412.1961.2015.00620
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy
Tong LIU1,Liangshun LUO1,Yanning ZHANG2,Yanqing SU1(),Jingjie GUO1,Hengzhi FU1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China. 2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China.
2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China.
Cite this article: 

Tong LIU,Liangshun LUO,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy. Acta Metall Sin, 2016, 52(7): 866-874.

Download:  HTML  PDF(1625KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Peritectic reaction is frequently encountered in many technologically important materials (e.g., steels, brass, bronze, intermetallic compounds, magnetic materials and YBa2Cu3Ox superconductors). Many interesting microstructures have been found during directional solidification of peritectic alloys, which have drawn much attention since last decade. In this work, in order to investigate the growth behavior of Al3Y phase as a peritectic phase, directioanal solidification experiments at different pulling rates have been performed on Al-53%Y (mass fraction) peritectic alloy. The results show that the primary phase and the peritectic phase both grow continuously, the microstructure, which is parallel to the solid-liquid interface has been found and explained at a low pulling rate (V=1 μm/s). With the growth distance increase, the precipitating solid phase from the liquid at the quenching solid-liquid interface transforms from primary Al2Y phase to peritectic Al3Y phase. The interface consists of coarse Al3Y phase without Al2Y phase. At relatively high pulling rates, the morphologies of primary Al2Y phase transit from continuous growth to cellular phase, and further to dendrites with the pulling rate increase. The results also show that the primary phase is enclosed with the serrate peritectic phase, and Al3Y phase precipitates from the liquid in needle shape at the same time. With the growth distance further increase, Al3Y phase become thicker and more numerous. In addition, the Al3Y phase precipitated from liquid transit from needle shape to short rod and lump shape, which distributes around the peritectic structure.

Key words:  Al-Y peritectic alloy      directional solidification      intermetallics compound      faceted growth     
Received:  03 December 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51425402, 51371066 and 51331005)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00620     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/866

Fig.1  Low (a) and locally high (b) magnified SEM-BSE images of as-cast Al-53%Y peritectic alloy
Fig.2  OM (a~c) and SEM-BSE (a1~a3, b1~b3, c1~c3) images show the microstructure evolutions of directionally solidified Al-53%Y at pulling rates V=1 μm/s (a, a1~a3), V=5 μm/s (b, b1~b3) and V=10 μm/s (c, c1~c3) under temperature gradient G=20 K/mm (Dash lines in Figs.2a1, b1 and c1 indicate solid/liquid interfaces)
Fig.3  OM (a~c) and SEM-BSE (a1~a3, b1~b3, c1~c3) images show the microstructure evolutions of directionally solidified Al-53%Y at V=20 μm/s (a, a1~a3), V=50 μm/s (b, b1~b3) and V=100 μm/s (c, c1~c3) under G=20 K/mm (Dash lines in Fig.3a1, b1, c1 indicate solid/liquid interfaces)
Fig.4  Partial Al-Y phase diagram with illustration window for banding (a) and the variation in the compositions of liquid with distance showing schematic of the formation of banding microstructure (b) (The composition CM and CN refer to the liquid compositions at which nucleation of Al3Y and Al2Y, respectively; CLP refers to the initial composition of peritectic reaction; C0 refers to initial composition; ΔTNAl2Y and ΔTNAl3Y are nucleation undercoolings required for the Al2Y and Al3Y phases, respectively)
Fig.5  Schematic of variation of solute concentration during directional solidification, the solute concentration distribution in sample before directional solidification (a) and the changes of solute concentration after directional solidification for a distance (b) (dx refer to growth distance and dCL means the solute concentration changes in liquid region after directional solidification for dx length. The composition CL and CS refer to the compositions at liquid and solid regions, respectively)
Fig.6  SEM-BSE images of primary Al2Y in directionally solidified Al-53%Y peritectic alloy at V=1 μm/s (a), V=20 μm/s (b), V=50 μm/s (c) and V=100 μm/s (d) under G=20 K/mm
Fig.7  SEM-BSE images of growth morphologies of Al3Y in directionally solidified Al-53%Y peritectic alloy (a~d) and Al-15%Y eutectic alloy (e, f) at V=1 μm/s (a), V=20 μm/s (b), V=50 μm/s (c, e) and V=100 μm/s (d, f) under G=20 K/mm
[1] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz, Trivedi R.Acta Mater, 2009; 57: 941
[2] Dobler S, Lo T S, Plapp M, Karma A, Kurz W.Acta Mater, 2004; 52: 2795
[3] Lo T S, Dobler S, Plapp M, Karma A, Kurz W.Acta Mater, 2003; 51: 599
[4] Luo L S, Su Y Q, Guo J J, Li X Z, Li S M, Zhong H, Liu L, Fu H Z. J Alloys Compd, 2008; 461: 121
[5] Phelan D, Reid M, Dippenaar R.Mater Sci Eng, 2008; A477: 226
[6] Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z.Acta Metall Sin, 2011; 47: 275
[6] (骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275)
[7] Luo L S, Fu H Z, Zhang Y M, Li X Z, Su Y Q, Guo J J.Acta Metall Sin, 2011; 47: 284
[7] (骆良顺, 傅恒志, 张宇民, 李新中, 苏彦庆, 郭景杰. 金属学报, 2011; 47: 284)
[8] Feng Z R, Shen J, Min Z X, Wang L S, Fu H Z.Mater Lett, 2012; 67: 14
[9] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermeta-llics, 2005; 13: 267
[10] Zhong H, Li S M, Liu L, Lü H Y, Zou G R, Fu H Z.J Cryst Growth, 2009; 311: 420
[11] Huang X M, Uda S, Yao X, Koh S.J Cryst Growth, 2006; 294: 420
[12] Valloton J, Dantzig J A, Plapp M, Rappaz M.Acta Mater, 2013; 61: 5549
[13] Li S M, Lu H Y, Li X L, Liu L, Fu H Z.Rare Met Mater Eng, 2005; 34: 234
[13] (李双明, 吕海燕, 李晓历, 刘林, 傅恒志. 稀有金属材料与工程, 2005; 34: 234)
[14] Aswal D K, Shinmura M, Hayakawa Y, Kumagawa M.J Cryst Growth, 1998; 193: 61
[15] Liu D M, Li X Z, Su Y Q, Peng P, Luo L S, Guo J J, Fu H Z.Acta Mater, 2012; 60: 2679
[16] Li S M, Lu H Y, Zhang R, Liu L, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 379
[17] Li S M, Ma B L, Lü H Y, Liu L, Fu H Z.Acta Metall Sin, 2005; 41: 411
[17] (李双明, 马伯乐, 吕海燕, 刘林, 傅恒志. 金属学报, 2005; 41: 411)
[18] Lü H Y, Li S M, Zhong H, Fu H Z.Rare Met, 2015; 39: 111
[18] (吕海燕, 李双明, 钟宏, 傅恒志. 稀有金属, 2015; 39: 111)
[19] Luo L S, Liu T, Zhang Y N, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 859
[19] (骆良顺, 刘桐, 张延宁, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 859)
[20] Liu D M, Li X Z, Su Y Q, Luo L S, Zhang B, Guo J J, Fu H Z.Mater Lett, 2011; 65: 1628
[21] Luo W Z, Shen J, Min Z X, Fu H Z.Mater Lett, 2009; 63: 1419
[22] Trivedi R, Shin J H.Mater Sci Eng, 2005; A413: 288
[23] Trivedi R.Metall Trans, 1995; 26A: 1583
[24] Tiller W A.J Cryst Growth, 1969; 6: 77
[25] Rettenmayr M.Int Mater Rev, 2009; 54: 1
[26] Loffler A, Reuther K, Engelhardt H, Liu D M, Rettenmayr M.Acta Mater, 2015; 91: 34
[27] Liu S H, Du Yong, Xu H H, He C Y, Schuster J.J Alloys Compd, 2006; 414: 60
[28] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 132
[28] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 132)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[12] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[15] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
No Suggested Reading articles found!