|
|
MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy |
Tong LIU1,Liangshun LUO1,Yanning ZHANG2,Yanqing SU1( ),Jingjie GUO1,Hengzhi FU1 |
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China. 2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China. 2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China. |
|
Cite this article:
Tong LIU,Liangshun LUO,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy. Acta Metall Sin, 2016, 52(7): 866-874.
|
|
Abstract Peritectic reaction is frequently encountered in many technologically important materials (e.g., steels, brass, bronze, intermetallic compounds, magnetic materials and YBa2Cu3Ox superconductors). Many interesting microstructures have been found during directional solidification of peritectic alloys, which have drawn much attention since last decade. In this work, in order to investigate the growth behavior of Al3Y phase as a peritectic phase, directioanal solidification experiments at different pulling rates have been performed on Al-53%Y (mass fraction) peritectic alloy. The results show that the primary phase and the peritectic phase both grow continuously, the microstructure, which is parallel to the solid-liquid interface has been found and explained at a low pulling rate (V=1 μm/s). With the growth distance increase, the precipitating solid phase from the liquid at the quenching solid-liquid interface transforms from primary Al2Y phase to peritectic Al3Y phase. The interface consists of coarse Al3Y phase without Al2Y phase. At relatively high pulling rates, the morphologies of primary Al2Y phase transit from continuous growth to cellular phase, and further to dendrites with the pulling rate increase. The results also show that the primary phase is enclosed with the serrate peritectic phase, and Al3Y phase precipitates from the liquid in needle shape at the same time. With the growth distance further increase, Al3Y phase become thicker and more numerous. In addition, the Al3Y phase precipitated from liquid transit from needle shape to short rod and lump shape, which distributes around the peritectic structure.
|
Received: 03 December 2015
|
Fund: Supported by National Natural Science Foundation of China (Nos.51425402, 51371066 and 51331005) |
[1] | Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz, Trivedi R.Acta Mater, 2009; 57: 941 | [2] | Dobler S, Lo T S, Plapp M, Karma A, Kurz W.Acta Mater, 2004; 52: 2795 | [3] | Lo T S, Dobler S, Plapp M, Karma A, Kurz W.Acta Mater, 2003; 51: 599 | [4] | Luo L S, Su Y Q, Guo J J, Li X Z, Li S M, Zhong H, Liu L, Fu H Z. J Alloys Compd, 2008; 461: 121 | [5] | Phelan D, Reid M, Dippenaar R.Mater Sci Eng, 2008; A477: 226 | [6] | Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z.Acta Metall Sin, 2011; 47: 275 | [6] | (骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275) | [7] | Luo L S, Fu H Z, Zhang Y M, Li X Z, Su Y Q, Guo J J.Acta Metall Sin, 2011; 47: 284 | [7] | (骆良顺, 傅恒志, 张宇民, 李新中, 苏彦庆, 郭景杰. 金属学报, 2011; 47: 284) | [8] | Feng Z R, Shen J, Min Z X, Wang L S, Fu H Z.Mater Lett, 2012; 67: 14 | [9] | Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermeta-llics, 2005; 13: 267 | [10] | Zhong H, Li S M, Liu L, Lü H Y, Zou G R, Fu H Z.J Cryst Growth, 2009; 311: 420 | [11] | Huang X M, Uda S, Yao X, Koh S.J Cryst Growth, 2006; 294: 420 | [12] | Valloton J, Dantzig J A, Plapp M, Rappaz M.Acta Mater, 2013; 61: 5549 | [13] | Li S M, Lu H Y, Li X L, Liu L, Fu H Z.Rare Met Mater Eng, 2005; 34: 234 | [13] | (李双明, 吕海燕, 李晓历, 刘林, 傅恒志. 稀有金属材料与工程, 2005; 34: 234) | [14] | Aswal D K, Shinmura M, Hayakawa Y, Kumagawa M.J Cryst Growth, 1998; 193: 61 | [15] | Liu D M, Li X Z, Su Y Q, Peng P, Luo L S, Guo J J, Fu H Z.Acta Mater, 2012; 60: 2679 | [16] | Li S M, Lu H Y, Zhang R, Liu L, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 379 | [17] | Li S M, Ma B L, Lü H Y, Liu L, Fu H Z.Acta Metall Sin, 2005; 41: 411 | [17] | (李双明, 马伯乐, 吕海燕, 刘林, 傅恒志. 金属学报, 2005; 41: 411) | [18] | Lü H Y, Li S M, Zhong H, Fu H Z.Rare Met, 2015; 39: 111 | [18] | (吕海燕, 李双明, 钟宏, 傅恒志. 稀有金属, 2015; 39: 111) | [19] | Luo L S, Liu T, Zhang Y N, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 859 | [19] | (骆良顺, 刘桐, 张延宁, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 859) | [20] | Liu D M, Li X Z, Su Y Q, Luo L S, Zhang B, Guo J J, Fu H Z.Mater Lett, 2011; 65: 1628 | [21] | Luo W Z, Shen J, Min Z X, Fu H Z.Mater Lett, 2009; 63: 1419 | [22] | Trivedi R, Shin J H.Mater Sci Eng, 2005; A413: 288 | [23] | Trivedi R.Metall Trans, 1995; 26A: 1583 | [24] | Tiller W A.J Cryst Growth, 1969; 6: 77 | [25] | Rettenmayr M.Int Mater Rev, 2009; 54: 1 | [26] | Loffler A, Reuther K, Engelhardt H, Liu D M, Rettenmayr M.Acta Mater, 2015; 91: 34 | [27] | Liu S H, Du Yong, Xu H H, He C Y, Schuster J.J Alloys Compd, 2006; 414: 60 | [28] | Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 132 | [28] | (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 132) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|