Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 875-882    DOI: 10.11900/0412.1961.2015.00622
Orginal Article Current Issue | Archive | Adv Search |
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1174KB) 
Export:  BibTeX | EndNote (RIS)      

Ni-based single-crystal superalloy DD5 has excellent high temperature properties, which is the preferred raw material for aero-engine turbine blade in recent year. In this research, DD5 superalloy was brazed by different contents of Ni-Co-Cr-W-B+DD99 mixed powder filler alloy. The microstructure evolution and interfacial formation mechanism of DD5 superalloy brazing joint were analyzed by SEM and EPMA. The mechanical properties of joint after solid solution treatment and aging treatment were tested. The results show that γ-Ni primary phase formed firstly in the Ni-Co-Cr-W-B/DD99 interface during the brazing process, and then B element segregated and precipitated to fine granular M3B2 type boride. The residual liquid phase solidified and formed lastly to the M3B2 phase, γ+γ′ eutectic phase and γ-Ni+Ni3B+CrB eutectic phase during cooling. With increasing the ratio of DD99 in mixed powder filler alloy, the low melting point eutectic phase and borides in the joint decrease and the uniformity of composition and microstructure of joint improve. When the ratio of DD99 increased to 70% (mass fraction) in the mixed powder filler alloy, it can be observed that element of B diffused to DD99 additive powder which result ed in the decrease of low melting point eutectic phases and brittle compounds. The high temperature tensile properties of joint is 1010 MPa at 870 ℃.

Key words:  single crystal superalloy      wide gap brazing      mixed powder filler alloy      microstructure      mechanical property     
Received:  03 December 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51401210 and 51331005) and High Technology Research and Development Program of China (No.2014AA041701)

Cite this article: 


URL:     OR

Alloy Ratio of mixed powder filler alloy
mass fraction / %
Solid-liquid transition temperature / ℃ Liquidus temperature
JSNi-1 100%Ni-Co-Cr-W-B 1050 1140
JSNi-2 50%Ni-Co-Cr-W-B+50%DD99 1050 1200
JSNi-3 30%Ni-Co-Cr-W-B+70%DD99 1050 1332
JSNi-4 20%Ni-Co-Cr-W-B+80%DD99 1050 1340
Table 1  Ratio of the mixed powder filler alloy, solid-liquid transition temperature and liquidus temperature
Fig.1  SEM images of DD5 single crystal superalloy joint brazed by JSNi-1 filler (IBZ—interface bonding zone, FAZ—filler alloy zone, EDZ—element diffusion zone)

(a) integrated joint (b) FAZ (c) EDZ

Fig.2  SEM images of DD5 single crystal superalloy joint brazed by JSNi-1filler after heat treatment

(a) integrated joint (b) FAZ (c) EDZ

Fig.3  SEM images of DD5 single crystal superalloy joint brazed by JSNi-2 (a~c), JSNi-3 (d~f) and JSNi-4 (g~i) at 1260 ℃ for 30 min

(a, d, g) FAZ (b, e, h) IBZ among DD99 powder (c, f, i) EDZ

Fig.4  SEM images of DD5 single crystal superalloy joint brazed by JSNi-2 (a), JSNi-3 (b) and JSNi-4 (c) after heat treatment
Fig.5  Effect of the proportion of mixed filler powders on the mechanical properties of joint
Fig.6  Schematic show the brazing mechanism of DD5 single crystal superalloy brazed by mixed powder filler alloy

(a) heating (b) holding (c) cooling (d) brazing joint

[1] Zhang X L, Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2012; 48: 1229
[1] (张晓丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[2] Tung S K, Lim L C, Lai M O.Scr Mater, 1996; 34: 763
[3] Huang X, Miglietti W.J Eng Gas Turb Power, 2012; 134: 010801
[4] Chen Y, Zhang K, Huang J, Hosseini S R E, Li Z G.Mater Des, 2016; 90: 586
[5] Zhang D X, Liu D S, Zhu X P.In: Sung W P, Chen R eds., 3rd Int Conf Frontiers of Manufacturing and Design Science, Hong Kong: Trans Tech Publications LTD, 2013: 64
[6] Liu T, Yan F, Liu S, Li R Y, Wang C M, Hu X Y.Opt Laser Technol, 2016; 80(2): 56
[7] Chelladurai A M, Gopal K A, Murugan S, Albert S K, Venugopal S, Jayakumar T.Sci Technol Weld Joining, 2015; 20: 578
[8] Ma T J, Yan M, Yang X W, Li W Y, Chao Y J.Mater Des, 2015; 85: 613
[9] Du S G, Wang X F, Gao M.Acta Metall Sin, 2015; 51: 951
[9] (杜随更, 王喜锋, 高漫. 金属学报, 2015; 51: 951)
[10] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[11] Philips N R, Levi C G, Evans A G.Metall Mater Trans, 2008; 39A: 142
[12] Pill J J, Kang C S.Mater Trans JIM, 1997; 38: 886
[13] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.Scr Mater, 2003; 48: 1283
[14] Khakian M, Nategh S, Mirdamadi S.J Alloys Compd, 2015; 653: 386
[15] Liu A N, Zhai Q Y, Kang W J, Xu J F, Zhang J, Ruan C Y, Wang W.Hot Work Technol, 2014; 43(17): 29
[15] (刘安娜, 翟秋亚, 康文军, 徐锦锋, 张军, 阮成勇, 王炜. 热加工工艺, 2014; 43(17): 29)
[16] Huang X, Au P.J Eng Gas Turb Power, 2008; 130: 032101
[17] Henhoeffer T, Huang X, Yand S, Au P, Nagy D.Mater Sci Technol Lond, 2010; 26: 431
[18] Henhoeffer T, Huang X, Au P.J Eng Gas Turb Power, 2011; 133: 092101
[19] Guo J T.Material Science and Engineering for Superalloys (II). Beijing: Science Press, 2008: 452
[19] (郭建亭. 高温合金材料学(中). 北京: 科学出版社, 2008: 452)
[20] Zhuang H S, Lugscheider E. High Temperature Brazing.Beijing: National Defence Industry Press, 1989: 46
[20] (庄鸿寿, Lugscheider E.高温钎焊. 北京: 国防工业出版社, 1989: 46)
[21] Li X H, Zhong Q P, Cao C X.J Aeron Mater, 2003; 23(12): 10
[21] (李晓红, 钟群鹏, 曹春晓. 航空材料学报, 2003; 23(12): 10)
[22] Li X H, Xiong H P, Zhang X J.Joining Technologies of Advanced Aeronautical Materials. Beijing: National Defense Industry Press, 2012: 28
[22] (李晓红, 熊华平, 张学军. 先进航空材料焊接技术. 北京: 国防工业出版社, 2012: 28)
[23] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Philos Mag, 2014; 94: 1219
[24] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.J Mater Sci Technol, 2015; 31: 129
[25] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[26] Liu J D.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[26] (刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[27] Sun Y, Liu J D, Liu Z M, Yang J X, Li J G, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 1581
[27] (孙元, 刘纪德, 刘忠明, 杨金侠, 李金国, 金涛, 孙晓峰. 金属学报, 2013; 49: 1581)
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[7] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[8] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[9] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[15] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
No Suggested Reading articles found!