Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 875-882    DOI: 10.11900/0412.1961.2015.00622
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2016, 52(7): 875-882.

Download:  HTML  PDF(1174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single-crystal superalloy DD5 has excellent high temperature properties, which is the preferred raw material for aero-engine turbine blade in recent year. In this research, DD5 superalloy was brazed by different contents of Ni-Co-Cr-W-B+DD99 mixed powder filler alloy. The microstructure evolution and interfacial formation mechanism of DD5 superalloy brazing joint were analyzed by SEM and EPMA. The mechanical properties of joint after solid solution treatment and aging treatment were tested. The results show that γ-Ni primary phase formed firstly in the Ni-Co-Cr-W-B/DD99 interface during the brazing process, and then B element segregated and precipitated to fine granular M3B2 type boride. The residual liquid phase solidified and formed lastly to the M3B2 phase, γ+γ′ eutectic phase and γ-Ni+Ni3B+CrB eutectic phase during cooling. With increasing the ratio of DD99 in mixed powder filler alloy, the low melting point eutectic phase and borides in the joint decrease and the uniformity of composition and microstructure of joint improve. When the ratio of DD99 increased to 70% (mass fraction) in the mixed powder filler alloy, it can be observed that element of B diffused to DD99 additive powder which result ed in the decrease of low melting point eutectic phases and brittle compounds. The high temperature tensile properties of joint is 1010 MPa at 870 ℃.

Key words:  single crystal superalloy      wide gap brazing      mixed powder filler alloy      microstructure      mechanical property     
Received:  03 December 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51401210 and 51331005) and High Technology Research and Development Program of China (No.2014AA041701)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00622     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/875

Alloy Ratio of mixed powder filler alloy
mass fraction / %
Solid-liquid transition temperature / ℃ Liquidus temperature
JSNi-1 100%Ni-Co-Cr-W-B 1050 1140
JSNi-2 50%Ni-Co-Cr-W-B+50%DD99 1050 1200
JSNi-3 30%Ni-Co-Cr-W-B+70%DD99 1050 1332
JSNi-4 20%Ni-Co-Cr-W-B+80%DD99 1050 1340
Table 1  Ratio of the mixed powder filler alloy, solid-liquid transition temperature and liquidus temperature
Fig.1  SEM images of DD5 single crystal superalloy joint brazed by JSNi-1 filler (IBZ—interface bonding zone, FAZ—filler alloy zone, EDZ—element diffusion zone)

(a) integrated joint (b) FAZ (c) EDZ

Fig.2  SEM images of DD5 single crystal superalloy joint brazed by JSNi-1filler after heat treatment

(a) integrated joint (b) FAZ (c) EDZ

Fig.3  SEM images of DD5 single crystal superalloy joint brazed by JSNi-2 (a~c), JSNi-3 (d~f) and JSNi-4 (g~i) at 1260 ℃ for 30 min

(a, d, g) FAZ (b, e, h) IBZ among DD99 powder (c, f, i) EDZ

Fig.4  SEM images of DD5 single crystal superalloy joint brazed by JSNi-2 (a), JSNi-3 (b) and JSNi-4 (c) after heat treatment
Fig.5  Effect of the proportion of mixed filler powders on the mechanical properties of joint
Fig.6  Schematic show the brazing mechanism of DD5 single crystal superalloy brazed by mixed powder filler alloy

(a) heating (b) holding (c) cooling (d) brazing joint

[1] Zhang X L, Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2012; 48: 1229
[1] (张晓丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[2] Tung S K, Lim L C, Lai M O.Scr Mater, 1996; 34: 763
[3] Huang X, Miglietti W.J Eng Gas Turb Power, 2012; 134: 010801
[4] Chen Y, Zhang K, Huang J, Hosseini S R E, Li Z G.Mater Des, 2016; 90: 586
[5] Zhang D X, Liu D S, Zhu X P.In: Sung W P, Chen R eds., 3rd Int Conf Frontiers of Manufacturing and Design Science, Hong Kong: Trans Tech Publications LTD, 2013: 64
[6] Liu T, Yan F, Liu S, Li R Y, Wang C M, Hu X Y.Opt Laser Technol, 2016; 80(2): 56
[7] Chelladurai A M, Gopal K A, Murugan S, Albert S K, Venugopal S, Jayakumar T.Sci Technol Weld Joining, 2015; 20: 578
[8] Ma T J, Yan M, Yang X W, Li W Y, Chao Y J.Mater Des, 2015; 85: 613
[9] Du S G, Wang X F, Gao M.Acta Metall Sin, 2015; 51: 951
[9] (杜随更, 王喜锋, 高漫. 金属学报, 2015; 51: 951)
[10] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[11] Philips N R, Levi C G, Evans A G.Metall Mater Trans, 2008; 39A: 142
[12] Pill J J, Kang C S.Mater Trans JIM, 1997; 38: 886
[13] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.Scr Mater, 2003; 48: 1283
[14] Khakian M, Nategh S, Mirdamadi S.J Alloys Compd, 2015; 653: 386
[15] Liu A N, Zhai Q Y, Kang W J, Xu J F, Zhang J, Ruan C Y, Wang W.Hot Work Technol, 2014; 43(17): 29
[15] (刘安娜, 翟秋亚, 康文军, 徐锦锋, 张军, 阮成勇, 王炜. 热加工工艺, 2014; 43(17): 29)
[16] Huang X, Au P.J Eng Gas Turb Power, 2008; 130: 032101
[17] Henhoeffer T, Huang X, Yand S, Au P, Nagy D.Mater Sci Technol Lond, 2010; 26: 431
[18] Henhoeffer T, Huang X, Au P.J Eng Gas Turb Power, 2011; 133: 092101
[19] Guo J T.Material Science and Engineering for Superalloys (II). Beijing: Science Press, 2008: 452
[19] (郭建亭. 高温合金材料学(中). 北京: 科学出版社, 2008: 452)
[20] Zhuang H S, Lugscheider E. High Temperature Brazing.Beijing: National Defence Industry Press, 1989: 46
[20] (庄鸿寿, Lugscheider E.高温钎焊. 北京: 国防工业出版社, 1989: 46)
[21] Li X H, Zhong Q P, Cao C X.J Aeron Mater, 2003; 23(12): 10
[21] (李晓红, 钟群鹏, 曹春晓. 航空材料学报, 2003; 23(12): 10)
[22] Li X H, Xiong H P, Zhang X J.Joining Technologies of Advanced Aeronautical Materials. Beijing: National Defense Industry Press, 2012: 28
[22] (李晓红, 熊华平, 张学军. 先进航空材料焊接技术. 北京: 国防工业出版社, 2012: 28)
[23] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Philos Mag, 2014; 94: 1219
[24] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.J Mater Sci Technol, 2015; 31: 129
[25] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[26] Liu J D.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[26] (刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[27] Sun Y, Liu J D, Liu Z M, Yang J X, Li J G, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 1581
[27] (孙元, 刘纪德, 刘忠明, 杨金侠, 李金国, 金涛, 孙晓峰. 金属学报, 2013; 49: 1581)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[12] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!