Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 883-889    DOI: 10.11900/0412.1961.2015.00576
Orginal Article Current Issue | Archive | Adv Search |
ELECTROLYSIS EXTRACTION OF NEODYMIUM FROM LiCl-KCl-AlCl3-Nd2O3 MELTS WITHTHE ASSISTANCE OF AlCl3
Yun XUE1,2,Xue YANG1,Yongde YAN1(),Milin ZHANG1,Debin JI1,Enyu LI1,Wei HAN1
1 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
2 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China.
Cite this article: 

Yun XUE,Xue YANG,Yongde YAN,Milin ZHANG,Debin JI,Enyu LI,Wei HAN. ELECTROLYSIS EXTRACTION OF NEODYMIUM FROM LiCl-KCl-AlCl3-Nd2O3 MELTS WITHTHE ASSISTANCE OF AlCl3. Acta Metall Sin, 2016, 52(7): 883-889.

Download:  HTML  PDF(684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the understanding of oxide spent fuel reprocessing, the AlCl3 was selected as chlorinating agent to directly chloridize spent fuel. At the same time, Nd could be extracted by co-deposition with the intro duction of Al3+. This process could be realized by the purpose of electrochemical extraction. The electrochemical behavior of Nd(III) ions was investigated in LiCl-KCl-AlCl3-Nd2O3 melt on W and Al electrodes at 753 K. Simultaneously, the chlorination effects of Nd2O3 by AlCl3 was also studied. Using Nd2O3 as raw material, Al-Nd alloy was obtained via electrolytic extraction Nd on W and Al electrodes. On the W electrode, no reduction signal of Nd(III) was detected in the cyclic voltammogram of LiCl-KCl-Nd2O3 melt. After the addition of AlCl3, three electrochemical signals for three Al-Nd intermetallic compounds from the underpotential deposition of Nd on pre-deposited Al substrate were observed. On the Al electrode, two formation signals of Al-Nd intermetallic compounds were observed in the LiCl-KCl-AlCl3-Nd2O3 melt. The results show that AlCl3 can effectively chloridize Nd2O3. Nd was extracted by galvanostatia electrolysis on the W electrodes under -2 A, and Al-Nd alloy was obtained. The XRD results suggest that Al2Nd phase is formed. However, when the electrolytic extraction of Nd was carried out on active Al electrode, Al3Nd phase was formed in Al-Nd alloy.

Key words:  LiCl-KCl melt      electrolytic extraction      lanthanide element      Al-Nd alloy     
Received:  11 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.91226201, 91326113 and 51574097), Science Foundation of Heilongjiang Province (No.LC2016018), Scientific Research and Special Foundation of Heilongjiang Postdoctoral Science Foundation (Nos.LBH-Q15019, LBH-Q15020 and LBH-TZ0411) and Foundation for University Key Teacher of Heilongjiang Province and Harbin Engineering University (Nos.1253G016 and HEUCFQ1415)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00576     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/883

Fig.1  Cyclic voltammogram obtained at a W electrode obtained before and after addition of AlCl3 in LiCl-KCl-Nd2O3 melt system (753 K, scan rate is 100 mV/s, i— current density, E— potential)
Fig.2  Cyclic voltammogram obtained at different current limits in LiCl-KCl-AlCl3-Nd2O3 system (753 K, scan rate is 100 mV /s)
Fig.3  Square wave voltammogram of LiCl-KCl-Nd2O3-AlCl3 on a W electrode (753 K, pulse height is 25 mV, potential step is 1 mV, frequency is 10 Hz)
Fig.4  Open circuit transient curve at a W electrode (electrode area S=0.322 cm2) after electrolysis 20 s at a potential of -2.4 V in LiCl-KCl-AlCl3-Nd2O3 melts at 753 K
Fig.5  Cyclic voltammogram obtained on an Al electrode (S=0.322 cm2) and the addition of Nd2O3 in LiCl-KCl-AlCl3 system (753 K, scan rate is 100 mV /s)
Fig.6  Square wave voltammogram of LiCl-KCl-Nd2O3-AlCl3 at 753 K on a Al electrode (S=0.322 cm2, pulse height is 25 mV, potential step is 1 mV, frequency is 10 Hz)
Fig.7  Open circuit transient curve on an Al electrode after electrolysis 10 s at a potential of -2.2 V in LiCl-KCl-Nd2O3-AlCl3 melts at 753 K
Fig.8  XRD pattern of the deposits obtained under galvanostatic electrolysis at a Al electrode (S=2.5 cm2) in LiCl-KCl-AlCl3 (6%)-Nd2O3 (3%) melts at 753 K and 0.6 A for 2.5 h
Fig.9  XRD pattern of the deposits obtained under galvanostatic electrolysis at a W electrode (S=0.322 cm2) in LiCl-KCl-AlCl3 (15%)-Nd2O3 (1.5%) melts at 973 K and 2 A for 2.5 h
Fig.10  SEM image (a) and elemental mappings of Al (b) and Nd (c) of Al-Li-Nd alloy obtained in LiCl-KCl-AlCl3 (15%)-Nd2O3 (1.5%) melt system at 973 K
[1] Gu Z M.J Nucl Radiochem, 2006; 28: 1
[1] (顾忠茂. 核化学与放射化学, 2006; 28: 1)
[2] Zhou P D.Nucl Sci Eng, 2002; 22: 261
[2] (周培德. 核科学与工程, 2002; 22: 261)
[3] Smolenski V, Novoselova A, Bovet A, Osipenko A, Kormilitsyn M.J Nucl Mater, 2009; 385: 184
[4] Castrillejo Y, Bermejo M R, Barrado E, Barrado E, Martinez A M.Electrochim Acta, 2006; 51: 1941
[5] Castrillejo Y, Bermejo M R, Barrado A I, Rardo R, Barrado E, Martinez A M.Electrochim Acta, 2005; 50: 2047
[6] Bermejo M R, Gómez J, Medina J, Martinez A M, Castrillejo Y.J Electroanal Chem, 2006; 588: 253
[7] Du S L, Su M Z.Acta Metall Sin, 1991; 27: 111
[7] (杜森林, 苏明忠. 金属学报, 1991; 27: 111)
[8] Nourry C, Massot L, Chamelot P, Taxil P.J Appl Electrochem, 2009; 39: 2359
[9] Taxil P, Massot L, Nourry C, Gibilaro M, Chamelot P, Cassayre L.J Fluorine Chem, 2009; 130: 94
[10] Xue Y, Zhou Z P, Yan Y D, Zhang M L, Li X, Ji D B, Han W, Zhang M.Acta Phys Chim Sin, 2014; 30: 1674
[10] (薛云, 周志萍, 颜永得, 张密林, 李星, 纪德彬, 韩伟, 张萌. 物理化学学报, 2014; 30: 1674)
[11] Xue Y, Zhou Z P, Yan Y D, Zhang M L, Li X, Ji D B, Tang H, Zhang Z J.RSC Adv, 2015; 5: 23114
[12] Li X, Yan Y D, Zhang M L, Xue Y, Tang H, Zhou Z P, Yang X N, Zhang Z J.J Electrochem Soc, 2014; 161: D248
[13] Zhang M L, Yang Y S, Han W, Li M, Ye K, Sun Y, Yan Y D.J Solid State Chem, 2013; 17: 2671
[14] Tang H, Yan Y D, Zhang M L, Li X, Han W, Xue Y, Zhang Z J, He H.Electrochim Acta, 2013; 107: 209
[15] Papatheodorou G N, Kucera G H.Inorg Chem, 1979; 18: 385
[16] Xue Y, Wang Q, Yan Y D, Chen L, Zhang M L, Zhang Z J.Energy Procedia, 2013; 39: 474
[17] Yan Y D, Tang H, Zhang M L, Xue Y, Han W, Cao D X, Zhang Z Z.Electrochim Acta, 2012; 59: 531
[18] Wang L, Liu Y L, Liu K, Tang S L, Yuan L Y, Su L L, Chai Z F, Shi W Q.Electrochim Acta, 2014; 147: 385
[19] Fukasawa K, Uehara A, Nagai T, Fujii T, Yamana H.J Nucl Mater, 2011; 414: 265
[20] De Cordoba G, Laplace A, Conocar O, Lacquement J, Caravaca C.Electrochim Acta, 2008; 54: 280
[21] Tang H, Pesic B.J Nucl Mater, 2015; 458: 37
[22] Yan Y D, Xu Y L, Zhang M L, Xue Y, Han W, Hang Y, Chen Q, Zhang Z J.J Nucl Mater, 2013; 433: 152
[23] Li X, Yan Y D, Zhang M L, Xue Y, Tang H, Zhou Z P, Yang X N, Zhang Z J.J Radioanal Nucl Chem, 2014; 299: 657
[24] Yan Y D, Yang X N, Zhang M L, Li X, Wang L, Xue Y, Zhang Z J.Acta Metall Sin, 2014; 50: 989
[24] (颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 金属学报, 2014; 50: 989)
[25] Massalski T B, Murray J L, Benett L H, Baker H.Binary Alloy Phase Diagrams. Vol.1, Metals Park, Ohio: The Materials Information Company, 1986: 293
[1] HUANG Qianyao;SHI Yanyu Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing. DYNAMICS OF PRECIPITATION AND TRANSFORMATION OF CARBIDES IN A Ni-BASE SUPERALLOY[J]. 金属学报, 1988, 24(6): 399-403.
No Suggested Reading articles found!