Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 828-834    DOI: 10.11900/0412.1961.2014.00610
Current Issue | Archive | Adv Search |
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY
Liyuan SHENG1(),Jianting GUO2,Chen LAI1,Tingfei XI1
1 Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Liyuan SHENG,Jianting GUO,Chen LAI,Tingfei XI. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY. Acta Metall Sin, 2015, 51(7): 828-834.

Download:  HTML  PDF(5253KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NiAl base eutectic alloy is an attractive material and promising to use in high temperature environment. However, the inadequate high temperature strength limits its application. In order to improve its strength, Zr was added in the Ti and Hf doped NiAl/Cr(Mo) base eutectic alloys and the effect of Zr addition on microstructure and mechanical properties of the eutectic alloy was investigated in this work. The results show that small addition of Zr can refine the NiAl/Cr(Mo) lamella inside the eutectic cell and optimize NiAl and Cr(Mo) phase morphology in the intercellular zone. Moreover, the Zr addition promotes the precipitation of bulk Heusler phase along eutectic cell boundary. With the increase of Zr addition, the eutectic cell of the alloys becomes fine, but the NiAl and Cr(Mo) phases in the intercellular zone become coarse and the Heusler phases exhibits semi-continuously distribution along the eutectic cell boundary. When the Zr content increases to 1% (atomic fraction), the NiAl and Cr(Mo) phases in eutectic cell and intercellular zone are all coarsened obviously. Additionally, coarse Cr-rich phases precipitate in the intercellular zone and Heusler phase forms the continuous network along eutectic cell boundary. The addition of Zr promotes the precipitation of coarse b-NiAl and a-Cr phase in Cr(Mo) phase and NiAl phases, respectively. Moreover, the segregation of Heusler phase forming elements along the precipitate interface leads to the formation of a large number of interfacial dislocations. In addition, the addition of Zr results in the precipitation of fine Heusler particles in NiAl phase. It is shown that appropriate addition of Zr can improve the compression strength of Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf eutectic alloys significantly at room temperature and high temperature without reducing its compression plasticity, but more addition of Zr reduces the compressive plastic of the alloy inevitably.

Key words:  NiAl/Cr(Mo) base eutectic alloy      Zr      Heusler phase      microstructure      compressive property     
Fund: Supported by Strategic New Industry Development Special Foundation of Shenzhen (Nos.JCYJ20140419114548515 and JCYJ20130402172114948), Shenzhen Collaborative Innovation Program of International Cooperation Research Projects (No.GJHZ20140419114548516) and Shenzhen Technology Development Project (No.CXZZ20140731091722497)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00610     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/828

Fig.1  SEM images of Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf-xZr alloys with x=0 (A1) (a), x=0.3 (A2) (b), x=0.5 (A3) (c) and x=1 (A4) (d)
Alloy Phase Ni Al Cr Mo Ti Hf Zr
Al NiAl 46.74 45.56 4.01 0.98 2.18 0.53 0
Cr(Mo) 8.04 9.53 70.62 11.73 0.06 0.01 0
Heusler 45.12 24.81 4.48 2.12 4.40 19.07 0
A2 NiAl 47.17 45.70 3.51 0.53 2.11 0.42 0.56
Cr(Mo) 7.13 10.94 68.46 13.26 0.09 0.01 0. 10
Heusler 44.27 22.26 5.66 1.89 4.10 14.92 6.90
A3 NiAl 46.97 45.67 4.06 0.41 1.90 0.34 0.65
Cr(Mo) 6.64 8.34 72.71 12.10 0.08 0.01 0.12
Heusler 45.42 22.96 4.13 1.99 3.80 12.78 8.92
A4 NiAl 46.79 46.43 3.97 0.22 1.75 0.12 0.72
Cr(Mo) 6.15 8.14 72.93 12.58 0.07 0.01 0.10
Heusler 45.90 22.85 3.27 1.28 3.20 9.90 13.60
Table 1  Chemical compositions of phases in A1~A4 alloys by EPMA analysis
Fig.2  XRD spectra of A1 and A4 alloys
Fig.3  SEM image of Heusler and (Ti, Hf, Zr) solid solution (Ti, Hf, Zr)ss phases (a), TEM image of Heusler and (Ti, Hf, Zr)ss phases along A2 alloy phase boundary (b), SAED patterns of Heusler phase along [110] (c), (Ti, Hf, Zr)ss phase along [110] (d) and TEM image of fine (Ti, Hf, Zr)ss precipitates along phase boundary (e)
Fig.4  TEM images of fine NiAl and Cr(Mo) lamellas in the center of eutectic cell (a), coherent and semi-coherent a-Cr precipitates in NiAl phase (b) and fine coherent NiAl precipitates in Cr(Mo) phase (c) in A1 alloy
Fig.5  TEM images of Heusler phase precipitates in bulk NiAl phase along eutectic boundary (a), semi-coherent NiAl precipitates in Cr(Mo) phase (b) and coherent and semi-coherent a-Cr precipitates in NiAl phase (c) in A4 alloy
Alloy Temperature Yield Compressive Compressive
strain / %
strength / MPa strength / MPa
A1 RT 1401 1739 17
1273 K 330 420 >35
A2 RT 1485 1975 12
1273 K 410 550 >35
A3 RT 1530 2265 16
1273 K 440 575 >35
A4 RT 1494 1995 7
1273 K 420 510 >35
Table 2  Compressive properties of A1~A4 alloys at room temperature (RT) and 1273 K
[1] Ye H Q. Met Powder Rep, 1997; 51: 36
[2] Guo J T. Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104 (郭建亭. 有序金属间化合物NiAl. 北京: 科学出版社, 2003: 104)
[3] Miracle D B. Acta Metall Mater, 1993; 41: 649
[4] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q. Mater Sci Eng, 2011; A528: 8324
[5] Yang J M, Jeng S M, Bain K, Amato R A. Acta Mater, 1997; 45: 295
[6] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Trans Nonferrous Met Soc China, 2013; 23: 983
[7] Seemüller C, Heilmaier M, Haenschke T, Bei H, Dlouhy A, George E P. Intermetallics, 2013; 35: 110
[8] Sheng L Y, Yang F, Guo J T, Xi T F, Ye H Q. Compos Part Eng, 2013; 45E: 785
[9] Chen X F, Johnson D R, Noebe R D, Oliver B F. J Mater Res, 1995; 10: 1159
[10] Sheng L Y, Guo J T, Ren W L, Zhang Z X, Ren Z M, Ye H Q. Intermetallics, 2011; 19: 143
[11] Whittenberger D J, Noebe R D, Joslin S M, Oliver B F. Intermetallics, 1999; 7: 627
[12] Sheng L Y, Yang F, Guo J T, Xi T F. Trans Nonferrous Met Soc China, 2014; 24: 673
[13] Sheng L Y, Yang F, Xi T F, Lai C, Guo J T. Mater Res Innov, 2013; 17(suppl): S101
[14] Tang L Z, Zhang Z G, Li S S, Gong S K. Trans Nonferrous Met Soc China, 2010; 20: 212
[15] Sheng L Y, Zhang W, Guo J T, Ye H Q. Mater Charact, 2009; 60: 1311
[16] Golberg D, Sauthoff G. Intermetallics, 1996; 4: 253
[17] Hagihara K, Sugino Y, Umakoshi Y. Intermetallics, 2006; 14: 1326
[18] Sheng L Y, Guo J T, Zhou L Z, Ye H Q. Mater Sci Eng, 2009; A500:238
[19] Frommeyer G, Rablbauer R, Sch?fer H J. Intermetallics, 2010; 18: 299
[20] Sheng L Y, Zhang W, Guo J T, Zhou L Z, Ye H Q. Intermetallics, 2009; 17: 1115
[21] Sheng L Y, Nan L, Zhang W, Guo J T, Ye H Q. J Mater Eng Perform, 2010; 19: 732
[22] Sheng L Y, Zhang W, Lai C, Guo J T, Xi T F, Ye H Q. Acta Metall Sin, 2013; 11: 1318 (盛立远, 章 炜, 赖 琛, 郭建亭, 奚廷斐, 叶恒强. 金属学报, 2013; 11: 1318)
[23] Chen Y X, Cui C Y, Guo J T, Li D X. Mater Sci Eng, 2004; A373: 279
[24] Shang Z, Shen J, Wang L, Du Y J, Xiong Y L, Fu H Z. Intermetallics, 2015; 57: 25
[25] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q. Mater Sci Eng, 2012; A555: 131
[26] Li H T, Guo J T, Ye H Q. Mater Sci Eng, 2007; A452-453: 763
[27] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q. Mater Des, 2011; 32: 4810
[28] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Intermetallics, 2012; 27: 4
[29] Bei H, George E P. Acta Mater, 2005; 53: 69
[30] Sheng L Y, Guo J T, Xi T F, Zhang B C, Ye H Q. Prog Nat Sci, 2012; 22: 231
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!