Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 835-843    DOI: 10.11900/0412.1961.2014.00626
Current Issue | Archive | Adv Search |
INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY
Jinlan AN1,Lei WANG1(),Yang LIU1,Guohua XU2,Guangpu ZHAO2
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY. Acta Metall Sin, 2015, 51(7): 835-843.

Download:  HTML  PDF(8927KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4169 superalloy is one kind of important metallic materials used for manufacturing turbine discs in aero-engine. In order to meet the demand of higher strength, high ratio alloying elements have to be added, resulting in the complex microstructure evolution during the long-term service at elevated temperature. Furthermore, the turbine disc usually bears overloading which will lead to the low cycle fatigue (LCF) damage in real working and result in fatal security problem. Besides, it is meaningful to decide the relationship between the microstructure evolution and performance degradation. In the present work, microstructure evolution and LCF behavior of GH4169 alloy during long-term aging were investigated. The microstructure evolutions of GH4169 alloy during long-term aging at 750 ℃ for 500, 1000, 1500 and 2000 h and the influences of long-term aging on the LCF behavior were investigated. The results show that the size of g″ phases increases and the volume fraction decreases with the increase of aging time, compared with the increase of both size and volume fraction of d phases. Both the fatigue strength and fatigue life of the alloy decrease with the increase of aging time. For the specimen aged for the same time, the cyclic stress firstly contributes to cyclic hardening, then cyclic stability, and finally cyclic softening with the increase of cyclic numbers. It is found that the decrease of cyclic stress contribution is slightly effected by the size of g″ phases increase and volume fraction decrease after long-term aging. Therefore, the LCF life of the alloy decreases since the crack easily propagates along with the long needle-like d phases and the g″ phases precipitate free zones.

Key words:  GH4169 superalloy      long-term aging      microstructure evolution      low cycle fatigue     
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03-A513) and Ministry of Education Technical Foundation (No.625010337)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00626     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/835

Fig.1  OM images of GH4169 alloy after standard heat treatment (SHT) (a) and aged at 750 ℃ for 500 h (b), 1000 h (c), 1500 h (d) and 2000 h (e)
Fig.2  Morphologies of g’ and g” phases in GH4169 alloy after SHT (a) and aged at 750 ℃ for 500 h (b), 1000 h (c), 1500 h (d) and 2000 h (e)
Fig.3  Morphologies of d phase in GH4169 alloy aged at 750 ℃ for 500 h (a), 1000 h (b), 1500 h (c) and 2000 h (d) (PFZ—precipitate free zone)
Aging time Size of g ′ phase Size of g " phase Volume fraction of g " phase Volume fraction of d phase
h nm nm % %
SHT 12.4[28] 19.9 15.9[25-28] 0
500 69.9 425.9 18.1 3.5
1000 86.9 512.4 15.9 8.2
1500 101.8 713.0 6.4 17.1
2000 127.9 779.3 4.0 19.4
Table 1  Size variation and volume fraction of precipitate phases in GH4169 alloy aged at 750 ℃ for different times
Area Al Ti Cr Mn Fe Co Ni Nb Mo
PFZ 1.43 1.22 20.67 0.29 20.39 1.97 49.96 2.20 1.86
d phase 0.57 2.60 3.72 0.15 4.71 1.31 67.87 17.50 1.57
Table 2  Chemical compositions of d phases and PFZ in GH4169 alloy aged at 750 ℃ for 500 h
Fig.4  Cyclic stress amplitude curves of GH4169 alloy aged at 750 ℃ for different times
Aging time / h Max cyclic stress / MPa Low cycle fatigue life / cyc
SHT 927 8504
500 850 7247
1000 763 6848
1500 705 5816
2000 627 5533
Table 3  Max cyclic stress and low cycle fatigue life of GH4169 alloy aged at 750 ℃ for different times
Fig.5  Dislocation configurations in GH4169 alloy aged at 750 ℃ for 1500 h after 0 cyc (a) and 50 cyc (b) (The inset in Fig.5b shows the SAED pattern)
Fig.6  Steady cyclic stress-strain curves of GH4169 alloy aged at 750 ℃ for different times
Fig.7  Morphologies of fracture crack initiation zone in GH4169 alloy after low cycle fatigue (LCF) after SHT (a) and aged at 750 ℃ for 1500 h (b) and 2000 h (c) (The arrows point to the fracture crack initiation areas)
Fig.8  Morphologies of fracture crack steady propagation zone in GH4169 alloy after LCF aged at 750 ℃ for 500 h (a) and 1500 h (b)
Fig.9  Morphologies of cross-section near LCF fracture surface in GH4169 alloy aged at 750 ℃ for 2000 h (The arrows indicate that the cracks propagate along the needle-like d phases)
Fig.10  Morphologies of fracture crack fast propagation zone in GH4169 alloy after LCF aged at 750 ℃ for 500 h (a), 1500 h (b) and 2000 h (c) (The arrows indicate the d phases)
Fig.11  Cross-sectional (a) and longitudinal (b) morphologies of fracture in GH4169 alloy after LCF aged at 750 ℃ for 2000 h (The arrows indicate that needle-like d phases are broken)
[1] Huang Q Y,Li H K. Superalloy. Beijing: Metallurgy Industry Press, 2000: 1 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 1)
[2] Leo P D G, Walsh M J, Maclachlan D, Korsunsky A M. Int Fatigue, 2009; 31: 1966
[3] Wang Y, Lin L, Shao W Z, Zhen L, Zhang X M. Trans Mater Heat Treat, 2007; 28(suppl): 176
[4] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2003; A193: 198
[5] Tian S G, Wang X, Xie J, Liu C, Guo Z G, Liu J, Sun W R. Acta Metall Sin, 2013; 49: 845 (田素贵, 王 欣, 谢 君, 刘 臣, 郭忠革, 刘 姣, 孙文儒. 金属学报, 2013; 49: 845)
[6] Zhang H Y, Zhang S H, Zhang W H, Cheng M, Wang Z T. J Plast Eng, 2007; 14(4): 69 (张海燕, 张士宏, 张伟红, 程 明, 王忠堂. 塑性工程学报, 2007; 14(4): 69)
[7] Yang Y R, Liang X F, Cai B C, Huang F X. J Aeronaut Mater, 1996; 16(2): 38 (杨玉荣, 梁学锋, 蔡伯成, 黄福祥. 航空材料学报, 1996; 16(2): 38)
[8] Jiang H P. Gas Turbine Experiment Res, 2002; 15(4): 1 (江和甫. 燃气涡轮试验与研究, 2002;15(4): 1)
[9] Liu F, Sun W R,Yang S L, Li Z, Guo S R, Yang H C, Hu Z Q. Acta Metall Sin, 2008; 44: 791 (刘 芳, 孙文儒, 杨树林, 李 站, 郭守仁, 杨洪才, 胡壮麒. 金属学报, 2008; 44: 791)
[10] Dong J X, Bai Y Q, Xu Z C, Xie X S, Zhang S H. J Univ Sci Technol Beijing, 1993; 15: 567 (董建新, 白元强, 徐志超, 谢锡善, 章守华. 北京科技大学学报, 1993; 15: 567)
[11] Azadian S, Wei L Y, Warren R. Mater Charact, 2004; 53: 7
[12] Tang J X, Lu S. J Aerospace Power, 2006; 21: 706 (唐俊星, 陆 山. 航空动力学报, 2006; 21: 706)
[13] Miller H E, Chamber W L. In: Sims C T, Ctoloff N S, Hagel W C eds., Superalloy II, New York: John-Wiley & Sons, 1987: 18
[14] Coffin L F. In: Carden A E, McEvily A J, Wells C H eds., Fatigue at Elevated Temperatures, Baltimore: ASTM, 1973: 112
[15] Gell M, Leverant G R. In: Carden A E, McEvily A J, Wells C H eds., Fatigue at Elevated Temperatures, Baltimore: ASTM, 1973: 37
[16] Coffin L F Jr. Soc Mater Sci, Japan, 1971; 21: 30
[17] Merrick H K. Metall Trans, 1974; 5A: 891
[18] Fournier D, Pineau A. Metall Trans, 1977; 8A: 109
[19] Day M F, Thyomas G B. Met Sci, 1979; 13: 25
[20] Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A: 473
[21] Yao J, Guo J T, Yuan C, Li Z J. Acta Metall Sin, 2005; 41: 357 (姚 俊, 郭建亭, 袁 超, 李志军. 金属学报, 2005; 41: 357)
[22] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289 (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289 )
[23] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723
[24] Xiao L, Chen D L. Scr Mater, 2004; 52: 603
[25] Deng Q, Zhuang J Y, Du J H. J Iron Steel Res, 1998; 10(2): 33 (邓 群, 庄景云, 杜金辉. 钢铁研究学报, 1998; 10(2): 33)
[26] Miller M K, Babu S S, Burke M G. Mater Sci Eng, 1999; A270: 14
[27] Miller M K. Micron, 2001; 32: 757
[28] Du J H, Lv X D, Den Q. Rare Met Mater Eng, 2014; 43: 1830
[29] Li S Q, Zhuang J Y, Yang J Y, Deng Q, Du J H, Xie X S, Li B, Xu Z C, Cao Z, SuZ Q, Jiang C Z. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 545
[30] Collier J P, Wong S H. Metall Trans, 1988; 19A: 1657
[31] Dong J X, Xie X S, Xu Z C, Zhang S H, Chen M Z, Radavich J F. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 649
[32] Wang L, Liu Y, Jin J C, Feng F, Lv X D, Zhang B J. J Iron Steel Res, 2011; 23(suppl 2): 213 (王 磊, 刘 杨, 晋俊超, 冯 飞, 吕旭东, 张北江. 钢铁研究学报, 2011; 23(增刊2): 213)
[33] Wang Y W, Yang L Y, You W, Bai B Z. Mater Sci Forum, 2005; 475-479: 3003
[34] Liu Y, Wang L, He S S, Feng F, Lv X D, Zhang B J. Acta Metall Sin, 2012; 48: 49 (刘 杨, 王 磊, 何思斯, 冯 飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)
[35] Wang L. Mechanical Properties of Materials. Shenyang: Northeastern University Press, 2014: 94 (王 磊. 材料的力学性能. 沈阳: 东北大学出版社, 2014: 94)
[36] An J L. Master Thesis, Northeastern University, Shenyang, 2014 (安金岚. 东北大学硕士学位论文, 沈阳, 2014)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[10] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[11] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[12] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[13] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
No Suggested Reading articles found!