Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 815-827    DOI: 10.11900/0412.1961.2014.00477
Current Issue | Archive | Adv Search |
EFFECT OF Hf, Sn, Ta, Zr, Dy AND Ho ON MICRO- STRUCTURE AND MECHANICAL PROPERTIES OF Nb-Nb5Si3 ALLOY
Jianting GUO(),Lanzhang ZHOU,Yuxin TIAN,Jieshan HOU,Gusong LI
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Jianting GUO,Lanzhang ZHOU,Yuxin TIAN,Jieshan HOU,Gusong LI. EFFECT OF Hf, Sn, Ta, Zr, Dy AND Ho ON MICRO- STRUCTURE AND MECHANICAL PROPERTIES OF Nb-Nb5Si3 ALLOY. Acta Metall Sin, 2015, 51(7): 815-827.

Download:  HTML  PDF(12836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviews the research works of effects of elements on the microstructure and mechanical properties of Nb-Si alloys conducted by the authors in recent years, including effect of Hf on Ni-16Si, Hf and Sn on Ni-20Ti-5Cr-3Al-18Si, Zr on Ni-22Ti-16Si, Ta on Nb-22Ti-16Si-7Cr-3Al, and rare earth elements Dy and Ho on Ni-23Ti-10Ta-2Cr-18Si and Ni-22Ti-16Si-7Cr-3Al-3Ta-2Hf, respectively. The addition of elements Hf, Zr, Sn+Hf, Ta, Dy and Ho in Nb-Si binary system and multi-component system enhances room and high temperature strength, plasticity and fracture toughness obviously. The enhancement of strength is related with the solution strengthening of elements, and the improvement of plasticity and ductility is related with the fining of microstructure and the increase of particles which exceed the critical size of (Nb, Ti)ss.

Key words:  Nb5Si3      alloy element      microstructure      mechanical property     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00477     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/815

Fig.1  BSE images of Nb-16Si alloy with different contents of Hf [10]

(a) Nb-16Si (b) Nb-16Si-1Hf (c) Nb-16Si-3Hf (d) Nb-16Si-7Hf

Alloy Phase Nb Si Hf
Nb-16Si Nbss 98.04 1.96 -
Nb3Si 75.35 24.65 -
Nb-16Si-1Hf Nbss 97.07 2.19 0.74
Nb3Si 74.77 23.98 1.25
Nb-16Si-3Hf Nbss 95.53 2.47 2.00
Nb3Si 71.78 24.36 3.86
Nb-16Si-7Hf Nbss 91.77 1.81 6.42
Nb3Si 67.66 24.20 8.14
Table 1  Chemical compositions of phases in Nb-16Si alloy with different contents of Hf [10]
Fig.2  Effect of Hf contents on room temperature toughness of Nb-16Si alloy [10]
Fig.3  Morphologies of crack propagation through bridging (a) and deflection (b) of Nb-16Si-1Hf alloy [10]
Fig.4  BSE images of Nb-20Ti-3Cr-3Al-18Si (alloy A) (a), Nb-20Ti-3Cr-3Al-18Si-1.5Sn (alloy B) (b) and Nb-20Ti-3Cr-3Al-18Si-1.5Sn-4Hf (alloy C) (c) [1]
Fig.5  Morphology of Hf-rich white phase (a) and selected area diffraction pattern from the white phase along zone axis [112ˉ3] of g-(Nb, Ti)5Si3 (b)[1]
Alloy Phase Nb Ti Cr Al Si Sn Hf
A (Nb, Ti)ss 58.69 25.04 11.91 2.97 1.58 - -
(Nb, Ti)5Si3 51.38 13.62 0.30 1.70 33.00 - -
Ti-rich (Nb, Ti)5Si3 46.10 17.65 0.47 3.31 32.47 - -
B (Nb, Ti)ss 58.93 24.76 9.43 3.11 1.61 2.16 -
(Nb, Ti)5Si3 50.60 13.71 1.25 1.76 32.10 0.58 -
Ti-rich (Nb, Ti)5Si3 45.64 16.89 1.64 3.91 32.25 0.39 -
C (Nb, Ti)ss 56.92 24.62 9.35 3.04 1.12 2.23 2.72
(Nb, Ti)5Si3 49.34 10.27 1.31 1.87 32.31 0.50 4.40
Hf-rich (Nb, Ti)5Si3 26.22 23.86 1.55 3.10 31.52 0.30 13.45
Table 2  Chemical compositions of phases in alloys A, B and C[1]
Alloy Vickers hardness / MPa Yield strength Fracture strength Compressive ductility
(Nb, Ti)ss b-(Nb, Ti)5Si3 MPa MPa %
A 685 1380 - 1806 -
B 589 1387 1625 1680 2.1
C 692 1429 1698 1846 6.3
Table 3  Summary of Vickers hardness, yield strength, fracture stress and compressive ducility of alloys A, B and C[1]
Fig.6  BSE images of as-cast Nb-22Ti-16Si-7Cr-3Al alloy with Ta contents of 0 (a), 2% (b), 5% (c) and 10% (d)[13]
Content / % Phase Nb Ti Si Al Cr Ta
0 (Nb, Ti)ss 68.85 18.85 1.81 3.69 7.04 0
(Nb, Ti)5Si3 49.60 13.46 33.49 2.08 1.36 0
2 (Nb, Ti)ss 56.83 23.27 4.63 3.61 9.33 2.33
(Nb, Ti)5Si3 44.13 16.10 35.44 1.85 1.77 0.71
5 (Nb, Ti)ss 54.48 21.22 6.71 3.30 8.18 6.11
(Nb, Ti)5Si3 42.48 14.86 37.05 1.20 1.55 2.86
10 (Nb, Ti)ss 50.74 17.99 8.87 3.77 5.29 13.34
(Nb,Ti)5Si3 35.87 14.49 34.87 2.65 1.93 5.19
Table 4  Chemical compositions of phases in Nb-22Ti-16Si-7Cr-3Al alloy with different Ta contents[13] (atomic fraction /%)
Fig.7  Compressive yield strength and fracture strain for Nb-22Ti-16Si-7Cr-3Al alloy with different Ta contents at room temperature [13]
Fig.8  Compressive yield strength for Nb-22Ti-16Si-7Cr-3Al alloy with different Ta contents at 1000 ℃[13]
Fig.9  BSE images of Nb-22Ti-16Si alloy with Zr contents of 0 (a), 2% (b) and 4% (c)[11]
Content / % Phase Nb Ti Zr Si
0 (Nb, Ti)ss 78.76 18.97 - 2.27
(Nb, Ti)3Si 59.47 17.95 - 22.58
g-(Nb, Ti)5Si3 30.58 33.61 - 35.81
2 (Nb, Ti)ss 79.86 17.86 0.95 1.32
(Nb, Ti)3Si 56.47 22.78 1.21 19.40
g-(Nb, Ti)5Si3 33.77 29.01 7.12 30.15
4 (Nb, Ti)ss 77.45 19.06 2.30 1.21
(Nb, Ti)3Si 48.80 26.52 2.26 22.43
g-(Nb, Ti)5Si3 31.85 26.62 10.07 32.55
Table 5  Chemical compositions of phases in Nb-22Ti-16Si alloys with different Zr contents[12]
Fig.10  TEM bright- field image of g- Nb5Si3 in Nb- 22Ti- 16Si alloy with 3%Zr (a) and selected area diffraction pattern along zone axis [112ˉ3] of g-(Nb, Ti)5Si3 (b) [11]
Fig.11  HRTEM image of (Nb, Ti)ss/g-(Nb, Ti)5Si3 interface[20]
Fig.12  Compressive properties of Nb-22Ti-16Si alloys with different Zr contents[11]
Alloy (Nb, Ti)ss (Nb, Ti)3Si
Nb-22Ti-16Si 390 906
Nb-22Ti-16Si-1Zr 394 1015
Nb-22Ti-16Si-2Zr 484 1048
Nb-22Ti-16Si-3Zr 513 1139
Nb-22Ti-16Si-4Zr 545 1157
Table 6  Vickers hardness (HV) of constituent phases of Nb-22Ti-16Si alloy with different Zr contents [11]
Fig.13  Fracture morphologies of Nb-22Ti-16Si alloy with Zr contents of 0 (a), 2% (b) and 4% (c) after room temperature compression[12]
Fig.14  BSE images of Nb-23Ti-10Ta-2Cr-18Si-xDy alloy with x=0 (a) and x=0.1 (b) [13]
x Phase Nb Ti Ta Cr Si Dy O
0 (Nb, Ti)ss 58.02 22.25 12.96 3.57 3.20 - -
a-(Nb, Ti)5Si3 41.83 15.33 6.33 0.83 35.68 - -
g-(Ti, Nb)5Si3 31.22 26.68 6.29 0.97 34.84 - -
0.1 (Nb, Ti)ss 56.01 23.93 13.45 3.60 3.01 - -
a-(Nb, Ti)5Si3 42.37 14.53 6.11 0.87 36.12 - -
g-(Ti, Nb)5Si3 32.58 27.54 5.99 0.81 33.08 - -
Dy2O3 0.81 - - - - 39.40 59.79
Table 7  Chemical compositions of phases in Nb-23Ti-10Ta-2Cr-18Si-xDy (x=0, 0.1) alloys[13]
Fig.15  BSE image of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf-0.1Ho alloy[17]
Fig.16  Bright-field TEM image of a-(Nb, Ti)5Si3/(Nb, Ti)ss (Inset shows the corresponding SAED pattern, zone axis is [310]a//[110]Nb)[20]
Fig.17  EDS line-scanning curves across the interface between (Nb, Ti)ss and (Nb, Ti)5Si3 phases in the alloy with 0.1%Dy [13]
x Yield strength / MPa Fracture strain
RT 1273 K 1473 K at RT / %
0 1760 730 399 13.0
0.1 1941 820 445 18.2
Table 8  Compressive properties of Nb-23Ti-10Ta-2Cr-18Si-xDy (x=0, 0.1) alloys[14]
Fig.18  Mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloy with different Ho contents [15]
Fig.19  BSE images of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf-0.1Ho alloy in transverse (a) and longitudinal (b) sections[19]
Fig.20  Compressive true stress-strain curves of conventional cast (CC) and directionally solidified (DS) alloys at 1623 K[19]
[1] Guo J T, Tian Y X, Sheng L Y, Zhou L Z, Ye H Q. Int J Mater Res, 2008; 99: 1
[2] Zelenitsas K, Tsakiropoulos P. Intermetallies, 2006; 14: 639
[3] Geng J, Tsakiropoulos P, Shao G. Intermetallics, 2006; 14: 227
[4] Ma C L, Li J G, Tan Y, Tanaka R, Hanada S. Mater Sci Eng, 2004; A386: 375
[5] Kim W Y, Yeo I D, Ra T Y, Cho G S, Kim M S. J Alloys Compd, 2004; 364: 186
[6] Jin-Hak K, Tatsuo T, Michiru S, Shuji H. Mater Sci Eng, 2004; A372: 137
[7] Kim W Y, Yeo I D, Kim M S, Hanada S. Mater Trans, 2002; 43: 3254
[8] Chan K S. Mater Sci Eng, 2002; A329-331: 531
[9] Bewlay B P, Lewandowski J J. J Mater, 1977; 60: 44
[10] Tian Y X, Guo J T, Zhou L Z, Cheng G M, Ye H Q. Mater Lett, 2008; 62: 2657
[11] Tian Y X, Guo J T, Sheng L Y, Cheng G M, Zhou L Z, He L L, Ye H Q. Intermetallics, 2008; 16: 807
[12] Tian Y X,Zhou L Z,Guo J T. In: High-Temperature Material Branch of The Chinese Society for Metals eds., The Power and The Energy Use High Temperature Structural Materials—11th Session of China High Temperature Alloy Annual Meeting Collection, Beijing: Metallurgical Industry Press, 2007: 602 (田玉新,周兰章,郭建亭. 见: 中国金属学会高温材料分会主编, 动力与能源用高温结构材料—第11届中国高温合金年会论文集, 北京: 冶金工业出版社, 2007: 602)
[13] Wu C L, Zhou L Z, Guo J T. Acta Metall Sin, 2006; 42: 1061 (伍春兰, 周兰章, 郭建亭. 金属学报, 2006; 42: 1061)
[14] Tian Y X, Guo J T, Zhou L Z, Li G S, Ye H Q. Acta Metall Sin, 2008; 44: 580 (田玉新, 郭建亭, 周兰章, 李谷松, 叶恒强. 金属学报, 2008; 44: 580)
[15] Tian Y X, Guo J T, Liang Y C, Wu C L, Zhou L Z, Ye H Q. Int J Mater Res, 2007; 98: 511
[16] Tian Y X, Guo J T, Cheng G M, Sheng L Y, Zhou L Z, He L L, Ye H Q. Int J Mater Res, 2008; 99: 2
[17] Tian Y X, Cheng G M, Guo J T, Zhou L Z, He L L, Ye H Q. Adv Eng Mater, 2007; 9: 936
[18] Tian Y X, Guo J T, Cheng G M, Sheng L Y, Zhou L Z, He L L, Ye H Q. Mater Des, 2009; 30: 2274
[19] Guo J T, Tian Y X, Cheng G M, Zhou L Z, He L L, Ye H Q. J Alloys Compd, 2009; 470: 606
[20] Cheng G M, Tian Y X, He L L, Guo J T. Philos Mag, 2009; 89: 2801
[21] Kim W Y, Tanaka H, Kasama A, Hanada S. Intemetallics, 2001; 9: 827
[22] Chan K S. Metall Mater Trans, 2001; 32A: 2475
[23] Kumar K S, Manna S K. Mater Res Symp Proc, 1989; 133: 415
[24] Massalski T B. Binary Alloy Phase Diagram. 2nd Ed., Materials Park, Ohio: The Materials Information Society, 1996: 2764, 2772
[25] Miura S, Aoki M, Saeki Y, Ohkubo K, Mishima Y, Mohri T. Metall Mater Trans, 2005; 36A: 489
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!