Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 807-814    DOI: 10.11900/0412.1961.2014.00592
Current Issue | Archive | Adv Search |
EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY
Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA(),Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA,Kui LIU. EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY. Acta Metall Sin, 2015, 51(7): 807-814.

Download:  HTML  PDF(7294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Significant efforts on development of advanced ultra-supercritical (A-USC) fossil fired power plants with steam conditions of 700 ℃ and 30 MPa or higher have been made in recent years. The most important consideration is the development of materials for superheater and reheater tubes with working temperature as high as 760 ℃. During the design and application of these materials, phase stability, creep rupture strength and corrosion performance at 700~760 ℃ should be evaluated. A new type Ni-Cr-W-Fe alloy has been designed for A-USC power plants and the microstructure and mechanical properties of Ni-Cr-W-Fe alloy after long-term aging at 760 ℃ was investigated using OM, SEM, TEM and tensile testing in this work. The fractographs of tensile samples were observed. The results show that the average gain size of specimen after solution-annealing at 1100 ℃ is about 80 μm with twin planes present in the matrix. The major precipitates after aging at 760 ℃ for 16 h are M23C6 and g'. The average particle size and the volume fraction of g' phase are approximately 29 nm and 19%, respectively. The coarsening behavior of g' during long-term aging at 760 ℃ follows Ostwald ripening theory. The solution-annealed Ni-Cr-W-Fe alloy performs excellent ductility at room temperature and the fracture mode of is ductile. The room temperature tensile strengths increase obviously with the decreasing of elongation and reduction of area after aging treatment. The yield strengths at both room and elevated temperatures decrease gradually with the extending aging time at 760 ℃. The tensile ductility at room temperature of Ni-Cr-W-Fe alloy decreases after aging from 1000 to 3000 h, while the elevated temperature ductility varies mildly and keeps at approximately 15%.

Key words:  Ni-Cr-W-Fe alloy      long-term aging      g' phase      tensile property     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00592     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/807

Fig.1  Microstructures and SAED pattern of Ni-Cr-W-Fe alloy after solution annealing at 1100 ℃ for 30 min and aging at 760 ℃ for 16 h (M and g in Fig.1d represent carbide and austenitic matrix, respectively)
Fig.2  SEM images of Ni-Cr-W-Fe alloys after aging at 760 ℃ for 200 h (a), 500 h (b), 1000 h (c), 2000 h (d) and 3000 h (e)
Fig.3  TEM images of intergranular M23C6 after aging at 760 ℃ for 200 h (a), 500 h (b), 1000 h (c), 2000 h (d) and 3000 h (e) (Insets show the SAED patterns corresponding to carbides)
Fig.4  Morphologies and distributions of gphase in Ni-Cr-W-Fe alloy after aging at 760 ℃ for 200 h (a), 500 h (b), 1000 h (c), 2000 h (d) and 3000 h (e)
Fig.5  Mean particle size (a) and coarsening behavior (b) of g’phase in Ni-Cr-W-Fe alloy after aging at 760 ℃ (dt—average particle size of g’phase, t—aging time)
Heat treatment Test temperature / ℃ Rp0.2 / MPa Rm / MPa A / % Z / %
1100 ℃, 30 min 25 319 732 64 77.0
1100 ℃, 30 min+ 25 754 1088 36 48.0
760 ℃, 16 h 704 700 920 10 17.0
750 645 810 12 14.5
Table 1  Tensile properties of Ni-Cr-W-Fe alloy after solution-annealing at 1100 ℃ and aging at 760 ℃
Fig.6  SEM images of the fracture surface of Ni-Cr-W-Fe alloy after solution-annealing at 1100 ℃ (a) and aging at 760 ℃ (b~d)

(a, b) tested at room temperature (c) tested at 704 ℃ (d) tested at 750 ℃

Fig.7  Tensile strength (a) and ductility (b) of Ni-Cr-W-Fe alloy after long-term aging at 760 ℃ (RT—room temperature)
Fig.8  SEM images of the fracture surface of Ni-Cr-W-Fe alloy after aging at 760 ℃ for 1000 h (a~c), 2000 h (d~f) and 3000 h (g~i)
[1] Lin F S, Xie X S, Zhao S Q, Dong J X. J Chin Soc Power Eng, 2011; 31: 960 (林富生, 谢锡善, 赵双群, 董建新. 动力工程学报, 2011; 31: 960)
[2] Viswanathan R, Purgert R, Goodstine R S, Tanzosh J, Stanko G, Shingledecker J P, Vitalis B. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 1
[3] Nakamura S, Kawashima H, Takei Y, Saito N, Tanaka Y, Nishimoto S. Mitsubishi Heavy Ind Tech Rev, 2011; 48(3): 8
[4] Viswanathan V, Purgert R, Rawls P. Adv Mater Proc, 2008; 8: 47
[5] Knezevic V, Schneider A, Landier C. Procedia Eng, 2013; 55: 240
[6] Van Stone R W. In: Strang A ed., Proc of Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, London: IOM Communications Ltd., 2000: 91
[7] Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221 (郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[8] Allen D, Keustermans J P, Grijbels S, Bicego V. Mater High Temp, 2004; 21: 53
[9] Patel S J, de Barbadillo J J, Baker B A, Gollihue R D. Procedia Eng, 2013; 55: 246
[10] Lin F, Chen S, Xie X. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 46
[11] Tokairin T, Dahl K V, Danielsen H K, Grumsen H B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[12] Wang T T, Wang C S, Guo J T, Zhou L Z. Mater Sci Forum, 2013; 747-748: 647
[13] Viswanathan R, Sarver J, Tanzosh J M. J Mater Eng Perform, 2006; 15: 256
[14] Wu Q, Hyojin S, Swinderman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569
[15] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[16] Sims C T, Hagel W C. The Superalloys. New York: John Wiley & Sons, 1972: 55
[17] MacKay R A, Nathal M V. Acta Metall Mater, 1990; 38: 993
[18] Kim H T, Chun S S, Yao X X. J Mater Sci, 1997; 32: 4917
[19] Ardell A J. Acta Metall, 1968; 16: 511
[20] Lifscitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[21] Footer P K, Richards B P. J Mater Sci, 1982; 17: 2141
[22] Wagner C. Z Elektrochem, 1961; 65: 581
[23] Li X, Saunders N, Miodownik A P. Metall Mater Trans, 2002; 33A: 3367
[24] Patil R V, Kale G B. J Nucl Mater, 1996: 230: 57
[25] Baldan A. J Mater Sci, 2002; 37: 2379
[26] Kong Y H, Chen Q Z. Mater Sci Eng, 2004; A366: 135
[27] Huang Q Y,Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 29 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 29)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[3] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[4] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[9] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[10] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[11] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[13] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[14] Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature[J]. 金属学报, 2017, 53(6): 703-708.
[15] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
No Suggested Reading articles found!