Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 971-978    DOI: 10.11900/0412.1961.2013.00767
Current Issue | Archive | Adv Search |
MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE
JIE Jinchuan1,2, ZOU Chunming1, WANG Hongwei1, WEI Zunjie1()
1 National Key Laboratory of Metal Precision Hot Forming, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 115110
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE. Acta Metall Sin, 2014, 50(8): 971-978.

Download:  HTML  PDF(2559KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pressure is, like temperature, a basic thermodynamic variable which can be used to alter the matter state. The atom volume, free energy of matter and other physical and chemical properties can be changed due to the application of high pressure. Many interesting materials including superconducting, super-hard, amorphous, nano-materials can be prepared under high pressures. Meanwhile, the application of high pressure during solidification of metallic materials has also attracted much attention of researchers in recent years. However, the understanding of high pressure on alloy solidification behavior is still lacked, and needs more experimental and theoretical investigation. In the present work, the effect of high pressure on solidification microstructure, phase constitution and mechanical properties of Al-20Mg alloy was investigated by OM, XRD and tensile test. Influence of solute distribution on mechanical properties of solid solution was analyzed and the corresponding mechanism was discussed based on the solute strengthening theory. The results showed that the amount of intermetallic compound b-Al3Mg2 decreases and the amount of Al(Mg) solid solution increases in the Al-20Mg alloy solidified under high pressure, resulting in the remarkable enhancement of the mechanical properties. The Al-20Mg alloy is fragile under 1.0×105 Pa. However, it can transform to be a ductile material with elongation of 11% when solidified under 2 and 3 GPa. Meanwhile, its strength can be also greatly improved. The ultimate tensile strength of Al-20Mg alloy solidified under 2 GPa is 8.9 times of that solidified under 1.0×105 Pa. The yield strength of Al-20Mg alloy solidified under 2 GPa is higher than that under 3 GPa. This phenomenon was explained by solute strengthening theory, and proved that the inhomogeneous distribution of Mg solute in the solid solution can enhance the mechanical properties. The fracture characteristic is essentially altered under the condition of high pressure solidification. The Al-20Mg alloy is cleavage fracture under 105 Pa, however, it transforms to the dimple fracture when solidified under 2 and 3 GPa. The present work provides a potential route to improve the mechanical properties of solid solution through the control of solute distribution in the solid solution.

Key words:  Al-Mg alloy      high pressure solidification      solid solution      mechanical property      fracture mechanism     
Received:  25 November 2013     
ZTFLH:  TG249.7  
Fund: Supported by National Natural Science Foundation of China (Nos.51171054 and 51001041) and China Postdoctoral Science Foundation (No.2013M530913)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00767     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/971

Fig.1  Schematic illustration of high pressure solidification process (a) and dimension of tensile sample (b) (F—applied load, R—radius)
Fig.2  XRD spectra of Al-20Mg alloy solidified under different pressures

(a) whole patterns

(b) diffraction of (220) and (311) planes of Alss under 2 and 3 GPa

Fig.3  Microstructures of Al-20Mg alloy solidified under 1.0×105 Pa (a), 1 GPa (b), 2 GPa (c), and 3 GPa (d)
Condition Tensile strength / MPa Yield strength / MPa Elongation / % Grain size / mm
1.0×105 Pa 53.5 0.05 0.1
1 GPa 105.1 0.15 0.3
2 GPa 474.8 232.8 11.10 0.3
3 GPa 430.1 198.1 11.10 0.4
Table 1  Tensile properties and grain sizes of Al-20Mg alloy solidified under different pressures
Fig.4  True tensile stress-strain curves of Al-20Mg alloy solidified under 2 and 3 GPa
Fig.5  XRD spectra of Al-12Mg alloy solidified under 2 GPa and homogenized at 430 ℃ for 17 h

(a) whole patterns (b) diffraction of (220) and (311) planes

Condition Grain size / mm Tensile property / MPa Yield strength / MPa Elongation / %
2 GPa 1.0 458.5 203.7 18.2
2 GPa and homogenized 1.1 420.2 185.8 17.4
Table 2  Mechanical properties and grain sizes of Al-12Mg alloys under different conditions
Fig.6  Fracture surfaces of Al-20Mg alloy solidified under 1.0×105 Pa (a), 1 GPa (b), 2 GPa (c) and 3 GPa (d)
[1] Mcmillan P F. Nat Mater, 2002; 1: 19
[2] Sharma S M, Sikka S K. Prog Mater Sci, 1996; 40: 1
[3] Zaug J M, Soper A K, Clark S M. Nat Mater, 2008; 7: 890
[4] Liao S C, Mayo W E, Pae K D. Acta Mater, 1997; 45: 4027
[5] Wei Z J, Wang Z L,Wang H W, Cao L. J Mater Sci, 2007; 42: 7123
[6] He D W, He M, Kiminami C S, Kuo K H, Zhang F X, Xu Y F, Wang W K. J Mater Res, 2001; 16: 910
[7] Zhang G Z, Yu X F, Wang X Y, Jia G L, Gao Y Y, Hao Z Y, Guo X B. Acta Metall Sin, 1999; 35: 285
(张国志, 于溪凤, 王向阳, 贾光霖, 高允彦, 郝兆印, 郭学彬. 金属学报, 1999; 35: 285)
[8] Zhang J, Zhang H F, Dong P, Quan M X, Hu Z Q. Acta Metall Sin, 2004; 40: 211
(张 甲, 张海峰, 董 盼, 全明秀, 胡壮麒. 金属学报, 2004; 40: 211)
[9] Canadinc D, Maier H J, Gabor P, May J. Mater Sci Eng, 2008; A496: 114
[10] Cui G R, Ma Z Y, Li S X. Scr Mater, 2008; 58: 1082
[11] Jie J C, Zou C M, Wang H W, Wei Z J. Mater Lett, 2010; 64: 869
[12] Jie J C, Zou C M, Brosh E, Wang H W, Wei Z J, Li T J. J Alloys Compd, 2013; 578: 394
[13] Starink M J, Zahra A M. Acta Mater, 1998; 46: 3381
[14] Zhang D L, Massalski T B, Paruchuri M R. Metall Mater Trans, 1994; 25A: 73
[15] Schoenitz M, Dreizin E L. J Mater Res, 2003; 18: 1827
[16] Scudino S, Sperling S, Sakaliyska M, Thomas C, Feuerbacher M, Kim K B, Ehrenberg H, Eckert J. Acta Mater, 2008; 56: 1136
[17] Scudino S, Sakaliyska M, Surreddi K B, Eckert J. J Alloys Compd, 2009; 483: 2
[18] Mourik P V, Maaswinkel N M, Keijser T H D, Mittemeijer E J. J Mater Sci, 1989; 24: 3779
[19] Vacher P, Boudrahem S. Acta Mater, 2006; 54: 4365
[20] Hall E O. Proceedings Phys Soc London, 1951; 64B: 747
[21] Petch N J. J Iron Steel Inst, 1953; 174: 25
[22] Mukai T, Higashi K, Tanimura S. Mater Sci Eng, 1994; A176: 181
[23] Chen X, Yan J, Karlsson A. Mater Sci Eng, 2006; A416: 139
[24] Deng D. Mater Des, 2009; 30: 359
[25] Lados D A, Apelian D, Wang L. Mater Sci Eng, 2010; A527: 3159
[26] Wang T G, Zhao S S, Hua W G, Li J B, Gong J, Sun C. Mater Sci Eng, 2010; A527: 454
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!