MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SPRAY FORMED H13 TOOL STEEL
ZHANG Jinxiang1 , HUANG Jinfeng1 ( ), WANG Hebin1 , LU Lin1 , CUI Hua2 , ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article:
ZHANG Jinxiang, HUANG Jinfeng, WANG Hebin, LU Lin, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SPRAY FORMED H13 TOOL STEEL. Acta Metall Sin, 2014, 50(7): 787-794.
Abstract 分别采用传统铸造与喷射成形工艺制备了H13钢并对其进行了锻造和传统热处理. 利用OM, SEM和XRD研究了铸造与喷射成形H13钢在不同工艺状态下组织的差异, 并且在相同的热处理制度下测试了两者的常温与高温力学性能. 结果表明: 与传统铸造H13钢相比, 喷射成形H13钢具有更好的回火稳定性、更高的室温与高温拉伸强度, 室温冲击韧性提高了2倍, 并且消除了带状偏析, 提高了组织的等向性. 喷射成形H13钢力学性能的提高主要归因于沉积态H13钢组织均匀细小, 消除了宏观偏析, 更没有粗大的一次碳化物, 这使得淬火后基体含有更多的合金元素, 分布也更均匀, 从而在回火时析出的二次碳化物更弥散并且晶粒也更细.
Key words:
spray forming
H13 steel
microstructure
mechanical property
Received: 17 December 2013
Fund: National Basic Research Program of China (No.2011CB606303)
[1]
ASM International Handbook Committee. Metals Handbook. 10th Ed., Metals Park: ASM, 1990: 93
[2]
Zhou J, Ma D S, Liu B S, Kang A J, Li X Y. J Iron Steel Res, 2012; 24(4): 47
(周 健, 马党参, 刘宝石, 康爱军, 李向阳. 钢铁研究学报, 2012; 24(4): 47)
[3]
Huo X Y. J Iron Steel Res, 2008; 20(11): 47
(霍晓阳. 钢铁研究学报, 2008; 20(11): 47)
[4]
Kheirandish S, Noorian A. J Iron Steel Res Int, 2008; 15(4): 61
[5]
Rafi H K, Ram G D, Phanikumar G, Rao K P. Mater Des, 2011; 32: 82
[6]
Hiraoka H, Kataoka Y, Yuda K, Taniguchi K, Sasada M, Hishinuma I. ISIJ Int, 1992; 32: 1177
[7]
Rivilin V G. Int Mater Rev, 1984; 29: 299
[8]
Schaaf P, Kramer A, Wiesen S, Gonser U. Acta Metall Mater, 1994; 42: 3077
[9]
Grant P S. Prog Mater Sci, 1995; 39: 497
[10]
Lachenicht V, Scharf G, Zebrowski D, Shalimov A. Metallurgist, 2011; 54: 656
[11]
Uhlenwinkel V, Ellendt A. Mater Sci Forum, 2007; 534-536: 429
[12]
Sahu S N, Harikishore S, Koria S C. Powder Metall, 2005; 48: 270
[13]
Grant P S. Metall Mater Trans, 2007; 38A: 1520
[14]
Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[15]
Brooks R G, Moore C, Leatham A G. Powder Metall, 1977; 20: 100
[16]
Leatham A G, Lawly A. Int J Powder Metall, 1993; 29: 321
[17]
Lavernia E J, Wu Y. Spray Atomization and Deposition. New York: J Wiley and Sons, 1996: 5
[18]
Lin Y J, McHugh K M, Zhou Y Z, Lavernia E J. Scr Mater, 2006; 55: 581
[19]
Liang X, Earthman J C, Lavernia E J. Acta Metall Mater, 1992; 40: 3003
[20]
Kayser F, Cohen M. Met Prog, 1952; 61(6): 79
[21]
Liu Z C, Du Z W, Zhu W F, Cao D K. Ordnance Mater Sci Eng, 2001; 24(3): 11
(刘宗昌, 杜志伟, 朱文方, 曹东奎. 兵器材料科学与工程, 2001; 24(3): 11)
[22]
Eggeler G. Acta Metall, 1989; 37: 3225
[23]
Tarui T, Takahashi T, Ohashi S, Uemori R. Iron Steelmaker, 1994; 21: 25
[24]
Delagnes D, Lamesle P, Mathon M H, Mebarki N, Levaillant C. Mater Sci Eng, 2005; A394: 435
[25]
Kozeschnik E, Bhadeshia. Mater Sci Technol, 2008; 24: 343
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Shared
Discussed