Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 787-794    DOI: 10.3724/SP.J.1037.2013.00820
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SPRAY FORMED H13 TOOL STEEL
ZHANG Jinxiang1, HUANG Jinfeng1(), WANG Hebin1, LU Lin1, CUI Hua2, ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Jinxiang, HUANG Jinfeng, WANG Hebin, LU Lin, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SPRAY FORMED H13 TOOL STEEL. Acta Metall Sin, 2014, 50(7): 787-794.

Download:  HTML  PDF(14552KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

分别采用传统铸造与喷射成形工艺制备了H13钢并对其进行了锻造和传统热处理. 利用OM, SEM和XRD研究了铸造与喷射成形H13钢在不同工艺状态下组织的差异, 并且在相同的热处理制度下测试了两者的常温与高温力学性能. 结果表明: 与传统铸造H13钢相比, 喷射成形H13钢具有更好的回火稳定性、更高的室温与高温拉伸强度, 室温冲击韧性提高了2倍, 并且消除了带状偏析, 提高了组织的等向性. 喷射成形H13钢力学性能的提高主要归因于沉积态H13钢组织均匀细小, 消除了宏观偏析, 更没有粗大的一次碳化物, 这使得淬火后基体含有更多的合金元素, 分布也更均匀, 从而在回火时析出的二次碳化物更弥散并且晶粒也更细.

Key words:  spray forming      H13 steel      microstructure      mechanical property     
Received:  17 December 2013     
ZTFLH:  TG142.1  
Fund: National Basic Research Program of China (No.2011CB606303)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00820     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/787

Fig.1  

铸态与喷射沉积态H13钢微观组织的OM和SEM像

Fig.2  

铸态与喷射沉积态H13钢的XRD谱

Fig.3  

铸造与喷射成形H13钢退火态的纵向组织

Fig.4  

铸造与喷射成形H13钢淬火态的纵向组织

Fig.5  

铸造与喷射成形H13钢回火硬度曲线

Fig.6  

铸造与喷射成形H13钢在不同温度回火的显微组织

Fig.7  

铸造与喷射成形H13钢冲击试样回火组织的OM和SEM像

Fig.8  

铸造与喷射成形H13钢600 ℃回火碳化物的XRD谱

Fig.9  

铸造和喷射成形H13钢的冲击断口形貌

Fig.10  

喷射成形H13钢的韧窝粒子形貌及其EDS

Steel σb
MPa
σs
MPa
δ5
%
AKV
J
Hardness
HRC
Cast-H13 1593 1379 11.2 15.2 47
SF-H13 1621 1412 12.8 45.6 49
表1  铸造与喷射成形H13钢的室温力学性能
Temperature Steel σb
MPa
σs
MPa
δ5
%
600 Cast-H13 932 813 20.7
SF-H13 1042 868 20.3
650 Cast-H13 610 547 24.2
SF-H13 745 594 27.8
700 Cast-H13 195 143 51
SF-H13 430 292 40
表2  铸造与喷射成形H13钢的高温拉伸性能
[1] ASM International Handbook Committee. Metals Handbook. 10th Ed., Metals Park: ASM, 1990: 93
[2] Zhou J, Ma D S, Liu B S, Kang A J, Li X Y. J Iron Steel Res, 2012; 24(4): 47
(周 健, 马党参, 刘宝石, 康爱军, 李向阳. 钢铁研究学报, 2012; 24(4): 47)
[3] Huo X Y. J Iron Steel Res, 2008; 20(11): 47
(霍晓阳. 钢铁研究学报, 2008; 20(11): 47)
[4] Kheirandish S, Noorian A. J Iron Steel Res Int, 2008; 15(4): 61
[5] Rafi H K, Ram G D, Phanikumar G, Rao K P. Mater Des, 2011; 32: 82
[6] Hiraoka H, Kataoka Y, Yuda K, Taniguchi K, Sasada M, Hishinuma I. ISIJ Int, 1992; 32: 1177
[7] Rivilin V G. Int Mater Rev, 1984; 29: 299
[8] Schaaf P, Kramer A, Wiesen S, Gonser U. Acta Metall Mater, 1994; 42: 3077
[9] Grant P S. Prog Mater Sci, 1995; 39: 497
[10] Lachenicht V, Scharf G, Zebrowski D, Shalimov A. Metallurgist, 2011; 54: 656
[11] Uhlenwinkel V, Ellendt A. Mater Sci Forum, 2007; 534-536: 429
[12] Sahu S N, Harikishore S, Koria S C. Powder Metall, 2005; 48: 270
[13] Grant P S. Metall Mater Trans, 2007; 38A: 1520
[14] Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[15] Brooks R G, Moore C, Leatham A G. Powder Metall, 1977; 20: 100
[16] Leatham A G, Lawly A. Int J Powder Metall, 1993; 29: 321
[17] Lavernia E J, Wu Y. Spray Atomization and Deposition. New York: J Wiley and Sons, 1996: 5
[18] Lin Y J, McHugh K M, Zhou Y Z, Lavernia E J. Scr Mater, 2006; 55: 581
[19] Liang X, Earthman J C, Lavernia E J. Acta Metall Mater, 1992; 40: 3003
[20] Kayser F, Cohen M. Met Prog, 1952; 61(6): 79
[21] Liu Z C, Du Z W, Zhu W F, Cao D K. Ordnance Mater Sci Eng, 2001; 24(3): 11
(刘宗昌, 杜志伟, 朱文方, 曹东奎. 兵器材料科学与工程, 2001; 24(3): 11)
[22] Eggeler G. Acta Metall, 1989; 37: 3225
[23] Tarui T, Takahashi T, Ohashi S, Uemori R. Iron Steelmaker, 1994; 21: 25
[24] Delagnes D, Lamesle P, Mathon M H, Mebarki N, Levaillant C. Mater Sci Eng, 2005; A394: 435
[25] Kozeschnik E, Bhadeshia. Mater Sci Technol, 2008; 24: 343
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!