Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 777-786    DOI: 10.3724/SP.J.1037.2013.00747
Current Issue | Archive | Adv Search |
INFLUENCE OF MICROSTRUCTURE ON IMPACT TOUGHNESS OF G18CrMo2-6 STEEL DURING TEMPERING
LI Zhenjiang1, XIAO Namin1,*(), LI Dianzhong1, ZHANG Junyong2, LUO Yongjian2, ZHANG Ruixue2
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 KOCEL Group Co., Ltd., Yinchuan 750021
Cite this article: 

LI Zhenjiang, XIAO Namin, LI Dianzhong, ZHANG Junyong, LUO Yongjian, ZHANG Ruixue. INFLUENCE OF MICROSTRUCTURE ON IMPACT TOUGHNESS OF G18CrMo2-6 STEEL DURING TEMPERING. Acta Metall Sin, 2014, 50(7): 777-786.

Download:  HTML  PDF(9571KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

以核电汽轮机缸体用G18CrMo2-6耐热钢为研究对象, 分析了显微组织、第二相类型、形貌、尺寸和分布随回火温度的变化及其对冲击韧性的影响. 结果表明, G18CrMo2-6钢正火经不同冷速冷却后得到不同的基体组织, 经680 ℃回火后, 冲击韧性均远高于指标要求, 因此基体组织差异不是导致冲击韧性急剧恶化的决定性因素. 经炉冷正火后在560~710 ℃区间回火, 显微组织均为铁素体+回火贝氏体, 随回火温度上升, 室温冲击韧性增加. 经560和600 ℃回火后, 块状马氏体/奥氏体(M/A)岛、条状颗粒不均匀分布于贝氏体铁素体基体上, 平均冲击韧性分别为17和29 J. 710 ℃回火后块状M/A岛分解, 条状颗粒转变为细小的颗粒状呈弥散分布, 冲击韧性达到峰值93 J. 除了基体组织的软化效应外, 第二相的类型、形貌、尺寸和分布能够明显改变诱发裂纹萌生的临界断裂应力, 是影响G18CrMo2-6钢冲击性能的一个关键因素.

Key words:  G18CrMo2-6 steel      tempering temperature      Charpy absorbed energy      carbide     
Received:  19 November 2013     
ZTFLH:  中图法TG161  
About author:  Correspondent: XIAO Namin, associate professor, Tel: (024)23970106, E-mail: nmxiao@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00747     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/777

Material C Mn Si P S Cu Cr Mo Ni V
Standard 0.15~0.20 0.5~0.9 0.2~0.6 ≤0.025 ≤0.025 ≤0.5 0.40~0.65 0.45~0.70 0.3~0.5 ≤0.04
Experimental 0.16 0.75 0.45 0.008 0.01 0.01 0.61 0.61 0.46 ≤0.02
表1  标准和实验用G18CrMo2-6钢的化学成分
Fig.1  

G18CrMo2-6钢的2种热处理工艺

Fig.2  

G18CrMo2-6钢在不同冷速正火后的OM和SEM像

Fig.3  

正火冷速对G18CrMo2-6钢基体组织构成及冲击韧性的影响

Fig.4  

G18CrMo2-6钢炉冷正火后的微观组织

Fig.5  

回火温度对G18CrMo2-6钢抗拉强度的影响

Fig.6  

回火温度对G18CrMo2-6钢冲击性能的影响

Fig.7  

不同温度回火后G18CrMo2-6钢在室温下的冲击断口宏观形貌

Fig.8  

回火温度对G18CrMo2-6钢组织硬度的影响

Fig.9  

G18CrMo2-6钢经过正火和不同温度回火后的SEM像

Fig.10  

回火温度对G18CrMo2-6钢中第二相尺寸的影响

Fig.11  

不同温度回火后G18CrMo2-6钢萃取碳化物的XRD谱

Fig.12  

G18CrMo2-6钢回火组织的大块状第二相TEM像及衍射斑点分析

Fig.13  

G18CrMo2-6钢回火组织的TEM像及碳化物衍射斑点分析

[1] Li Y L,Zhang H Q,Peng B C,Li J F. Pressure Vessel Technol, 2010; 27: 210
(李云良, 张汉谦, 彭碧草, 李金富. 压力容器, 2010; 27: 210)
[2] Im Y R, Jun O Y, Lee B J. J Nucl Mater, 2001; 297: 138
[3] Gurovich B A, Kuleshova E A, Shtrombakh Y I, Zabusov O O, Krasikov E A. J Nucl Mater, 2000; 279: 259
[4] Shen D D, Song S H, Yuan Z X, Weng Q L. Mater Sci Eng, 2005; A394: 53
[5] Sun S W, Mao J F, Lei T Q, He L L. Acta Metall Sin, 2000; 36: 1009
(孙树文, 茅建富, 雷廷权, 贺连龙. 金属学报, 2000; 36: 1009)
[6] Tao P, Zhang C, Yang Z G. Acta Metall Sin, 2009; 45: 51
(陶 鹏, 张 弛, 杨志刚. 金属学报, 2009; 45: 51)
[7] Luo Y, Peng J M, Wang H B, Wu X C. Mater Sci Eng, 2010; A527: 3433
[8] Dzioba I,Gajewski M,Neimitz A. Int J Pressure Vessel Pipe, 2010; 87: 575
[9] Narström T, Isacsson M. Mater Sci Eng, 1999; A271: 224
[10] Tanguy B, Besson J, Piques R, Pineau A. Eng Fract Mech, 2005; 72: 4
[11] Hwang B, Lee C G. Mater Sci Eng, 2010; A527: 4341
[12] Hu G L, Liu Z T, Wang P, Hua W J, Kang M K. Acta Metall Sin, 1989; 25: 110
(胡光立, 刘正堂, 王 平, 华文君, 康沫狂. 金属学报, 1989; 25: 110)
[13] Wan D C, Yu W, Li X L, Zhang J, Wu H B, Cai Q W. Acta Metall Sin, 2012; 48: 455
(万德成, 余 伟, 李晓林, 张 杰, 武会宾, 蔡庆伍. 金属学报, 2012; 48: 455)
[14] Yang H, Kim S. Mater Sci Eng, 2001; A319: 316
[15] Fujita N, Bhadeshia H. ISIJ Int, 2002; 42: 760
[16] Kozeschnik E, Svoboda J, Fratzl P, Fischer F D. Mater Sci Eng, 2004; A385: 157
[17] Bhadeshia H K D H. In: Chandra T, Torralba J M, Sakai T eds., Proc 4th Int Conf on Processing and Manufacturing of Advanced Materials. Switzerland: Trans Tech Publ, 2003: 35
[18] Chattopadhyay S, Sellars C. Acta Metall, 1982; 30: 157
[19] Tian Y L, Kraft R W. Metall Trans, 1987; 18A: 1403
[20] Gür C, Yıldız İ. Mater Sci Eng, 2004; A382: 395
[21] Tezuka H,Sakurai T. Int J Pressure Vessel Pipe, 2005; 82: 165
[22] Guan K, Xu X, Xu H, Wang Z. Nucl Eng Des, 2005; 235: 2485
[23] Briant C. Mater Sci Technol, 1989; 5: 138
[24] Michaud P, Delagnes D, Lamesle P, Mathon M H. Acta Mater, 2007; 25: 4877
[25] Cui Z Q,Tan Y C. Metallographic and Thermal Treatment. 2nd Ed., Beijing: China Machine Press, 2007: 261
(崔忠圻,覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版社, 2007: 261)
[26] Li Y, Baker T. Mater Sci Technol-Lond, 2010; 26: 1029
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[4] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[5] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[6] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[7] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[8] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[9] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[10] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[11] Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. 金属学报, 2018, 54(3): 404-410.
[12] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[13] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[14] Bo CHEN, Xianchao HAO, Yingche MA, Xiangdong CHA, Kui LIU. Effects of Nitrogen Addition on Microstructure and Grain Boundary Microchemistry of Inconel Alloy 690[J]. 金属学报, 2017, 53(8): 983-990.
[15] Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. 金属学报, 2017, 53(6): 669-676.
No Suggested Reading articles found!