Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1325-1332    DOI: 10.3724/SP.J.1037.2013.00452
Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL, FRICTION AND WEAR PROPERTIES OF NiAl-2.5Ta-7.5Cr-1B ALLOY
WANG Zhensheng 1,2), ZHANG Meng'en 1), YANG Shuangshuang 1), GUO Jianting3), ZHOU Lanzhang3), CHEN Zhigang1)
1) Engineering Research Center of Advanced Mining Equipment, Ministry of Education,Hunan University of Science and Technology, Xiangtan 411201
2) High Temperature Wear Resistance Materials and Preparation Technology of Hunan Province,the National Defense Science and Technology Key Laboratory, Hunan University of Science and Technology, Xiangtan 411201
3) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Zhensheng, ZHANG Meng'en, YANG Shuangshuang, GUO Jianting, ZHOU Lanzhang, CHEN Zhigang. MICROSTRUCTURE, MECHANICAL, FRICTION AND WEAR PROPERTIES OF NiAl-2.5Ta-7.5Cr-1B ALLOY. Acta Metall Sin, 2013, 49(11): 1325-1332.

Download:  PDF(4108KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

  The microstructure and properties of NiAl-2.5Ta-7.5Cr-1B alloy are investigated in this work. The microstructure is analyzed by SEM and XRD, the mechanical properties are conducted by a universal mechanical testing machine and the friction and wear features from room temperature to 600℃ are mainly studied using an elevated temperature friction and wear machine. The experimental results show that the NiAl-2.5Ta-7.5Cr-1B alloy consists of NiAl, eutectic (NiAl-Cr), Cr2Ta, (Ta, Cr)3B2 and TaB. The addition of B into the NiAl-2.5Ta-7.5Cr alloy improves the plasticity by 50%. The NiAl-2.5Ta-7.5Cr-1B alloy exhibits excellent self-lubricating and wear-resistant properties from room temperature to 600℃ which could be mainly attributed to the co-existence of B2O3 liquid phase and Al4B2O9 solid particles on the worn surface. The B2O3 liquid phase makes the friction and wear process conform to the mechanism of hydrodynamic lubrication and the Al4B2O9 solid particles have a load-bearing function.

Key words:  NiAl-2.5Ta-7.5Cr-1B alloy      microstructure      mechanical property      friction and wear property     
Received:  27 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00452     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1325

[1] Guo J T. Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 58

(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 58)
[2] Noebe R D, Bowman R R, Nathal M V. Int Mater Rev, 1993; 38(4): 193
[3] Miracle D B. Acta Metall Mater, 1993; 41: 649
[4] Ball A, Smallman R E. Acta Metall Mater, 1966; 14: 1349
[5] Ball A, Smallman R E. Acta Metall Mater, 1966; 14: 1517
[6] Veyssiere P, Noebe R D. Philos Mag, 1992; 65: 1
[7] Bowman R R, Noebe R D, Raj S V, Locci I E. Metall Trans, 1992; 23A: 1493
[8] Nagpal P, Baker I. J Mater Lett, 1992; 11: 1209
[9] Cotton J D, Noebe R D, Kaufman M J. Intermetallics, 1993; 1: 117
[10] Liu Z G, Guo J T, Shi N L, Hu Z Q. J Mater Sci Technol, 1996; 12: 7
[11] Zhou J, Guo J T . Mater Sci Eng, 2003; A339: 167
[12] Hawk J A, Alman D E. J Mater Sci Technol, 1997; (spec issue): 239
[13] Hawk J A, Alman D E. Wear, 1999; (spec issue): 225
[14] Wang Z S, Guo J T, Zhou L Z, Xie Y, Sheng L Y, Hu Z Q. Chin J Mater Res, 2009; 23: 225
(王振生, 郭建亭, 周兰章, 谢 \ \ 亿, 盛立远, 胡壮麒. 材料研究学报, 2009; 23: 225)
[15] Wang Z S, Guo J T, Zhou L Z, Sheng L Y, Hu Z Q. Acta Metall Sin, 2009; 45: 297
(王振生, 郭建亭, 周兰章, 盛立远, 胡壮麒. 金属学报, 2009; 45: 297)
[16] Wang Z S, Zhou L Z, Guo J T, Sheng L Y, Hu Z Q. Tribology, 2008; 28: 497
(王振生, 周兰章, 郭建亭, 胡壮麒. 摩擦学学报, 2008; 28: 497)
[17] Guo J T, Wang Z S, Sheng L Y, Zhou L Z. Prog Nat Sci: Mater Int, 2012; 22: 414
[18] Wang Z S, Zhou L Z, Guo J T, Zhang G Y, Li H Q, Hu Z Q. Tribology, 2010; 30: 589
(王振生, 周兰章, 郭建亭, 张光业, 李会强, 胡壮麒. 摩擦学学报, 2010; 30: 589)
[19] Palma M, Preuhsb J, Sauthoff G. J Mater Process Technol, 2003; 136: 105
[20] Zeumer B, Sauthoff G. Intermetallic$s$, 1998: 6: 451
[21] Katsubiro N, Shingo S, Taku K, Soukich U. J Jpn Soc Powder Metall,1993; 40(1): 49
[22] Senda T, Yamamoto Y, Ochi Y J. Ceram Soc Jpn, 1993; 101: 461
[23] Archard J F. Wear, 1958/1959; 2: 438
[24] Bowden F P, Tabor D, translated by Chen S L, Yuan H C, Ding X J. The Friction and Lubrication of Solids.Beijing: China Machine Press, 1982: 74
(Bowden F P, Tabor D著, 陈绍澧, 袁汉昌, 丁雪加~译. 固体的摩擦与润滑. 北京: 机械工业出版社, 1982: 74)
[25] Shi M S. Solid Lubrication Technology. Beijing: China Petrochemical Press, 1998: 156

(石淼森. 固体润滑技术. 北京: 中国石化出版社, 1998: 156)

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!