Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1333-1338    DOI: 10.3724/SP.J.1037.2013.00455
Current Issue | Archive | Adv Search |
APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS
HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS. Acta Metall Sin, 2013, 49(11): 1333-1338.

Download:  PDF(2216KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chemical composition, grain size, and processing conditions such as temperature and strain rate have important influence on superplasticity of NiAl alloys, which would allow the optimization of these parameters in order to achieve the desired combination of properties. In this work, the optimal superplastic deformation conditions of NiAl alloys were studied by using artificial neural networks (ANN). The standard multilayer feedforward networks were trained and tested using comprehensive datasets from previous experimentally works on the as-extruded NiAl, NiAl-25Cr, NiAl-20Fe-Y(Ce), NiAl-30Fe-Y, NiAl-9Mo, NiAl-P alloys.Different effects are modeled, including the influence of the alloying elements on the superplastic, and the influence of deformation temperature, strain rate and grain size on the elongations during the superplastic tensile tests. The artificial neural network models are combined with computer programmers for optimization of the inputs in order to achieve desirable combination of outputs. Good performances of the neural networks  are achieved. Results of this research propose a range of strain rate and temperature within which the NiAl alloy possesses superplasticity with larger elongations, although the deformation temperature and strain rate of superplastic alloys alternately influence each other within the range. These models are convenient and powerful tools for practical applications in superplastic prediction in NiAl alloys.

Key words:  NiAl alloy      superplasticity      artificial neural network     
Received:  29 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00455     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1333

[1] Chen R S, Guo J T, Yin W M, Zhou J Y.  Acta Metall Sin, 1998; 34: 1121

(陈荣石, 郭建亭, 殷为民, 周继杨. 金属学报, 1998; 34: 1121)
[2] Du X H, Guo J T, Zhou B D.  Acta Metall Sin, 2001; 37: 144
(杜兴蒿, 郭建亭, 周彼德. 金属学报, 2001; 37: 144)
[3] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Acta Metall Sin, 1999; 35: 995
(周文龙, 郭建亭, 陈荣石, 周继杨. 金属学报, 1999; 35: 995)
[4] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Acta Metall Sin, 2000; 36: 796
(周文龙, 郭建亭, 陈荣石, 周继杨. 金属学报, 2000; 36: 796)
[5] Du X H, Guo J T, Zhou B D.  Acta Metall Sin, 2001; 37: 1112
(杜兴蒿, 郭建亭, 周彼德. 金属学报, 2001; 37: 1112)
[6] Qi Y H, Guo J T, Cui C Y.  Chin J Nonferrous Met, 2002; 12: 2
(齐义辉, 郭建亭, 崔传勇. 中国有色金属学报, 2002; 12: 2)
[7] Sundar R S, kitazono K, Sato E.  Acta Metall Mater, 1998; 46: 5663
[8] Noebe R D, Walstan W S. In: Nathal M V, Darolia R, Liu C T, Martin P L,Miracle D B, Wagner R, Yamaguchi M eds.,  Structural Intermetallics 1997.New York: TMS, 1997: 573
[9] Chen R S, Guo J T, Yin W M, Zhou J Y.  Scr Mater, 1998; 40: 209
[10] Zhou W L, Guo J T, Chen R S, Zhou J Y.  Mater Lett, 2001; 47: 3
[11] Du X H, Guo J T, Zhou B D.  Scr Mater, 2001; 45: 69
[12] Li D Q, Liu Y, Shan A D, Lin D L.  Acta Metall Sin, 1996; 32: 417
(郦定强, 刘毅, 单爱党, 林栋梁. 金属学报, 1996; 32: 417)
[13] Lin D L, Li D Q, Liu Y.  Intermetallics, 1998; 6: 243
[14] Guo J T, Du X H, Zhou L Z, Zhou B D, Qi Y H, Li G S.  J Mater Res, 2002; 17: 121
[15] Frommeyer G, Kowalski W, Rablbauer R.  Metall Mater Trans, 2006; 37A: 3511
[16] Imayev R M, Kaibyshev O A, Salishchev G A.  Acta Metall Mater, 1992; 40: 581
[17] Lin D L, Li D Q, Liu Y.  Intermetallics, 1998; 6: 243
[18] Hu J, Lin D L.  Mater Lett, 2004; 58: 1297
[19] Jiang D M, Lin D L.  J Mater Sci Lett, 2002; 21: 505
[20] Sun J, He Y H, Wu J S.  Mater Sci Eng, 2002; A329: 885
[21] Guo J T.  Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 231
(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 231)
[22] Gupta R K, Mehta R, Agarwala V, Pant B, Sinha P P.  Int J Aerosp Eng, 2011: 874375
[23] Malinov S, Sha W.  Mater Sci Eng, 2004; A365: 202
[24] Malinov S, Sha W, McKeown J J.  Comput Mater Sci, 2001; 21: 375
[25] Yue Z F, Lu Z Y, Zheng C Q.  Acta Metall Sin, 1995; 31: 370
(岳珠峰, 吕振宇, 郑长卿. 金属学报, 1995; 31: 370)
[26] Li J W, Peng Z F.  Acta Metall Sin, 2004; 40: 257
(李军伟, 彭志方. 金属学报, 2004; 40: 257)
[27] Mackay D J C.  Neural Comput, 1992; 4: 415
[28] Gui Z L, Chen L J.  J Mater Eng, 1994; (10): 22
(桂忠楼, 陈立江. 材料工程, 1994; (10): 22)
[29] Liu H W, Wang Q F, Guo P, Liu L.  J Iron Steel Res, 2003; 15: 630
(刘汉武, 王勤峰, 郭鹏, 刘林. 钢铁研究学报, 2003; 15: 630)

[30] Guo Z, Sha W.  Comput Mater Sci, 2004; 29: 12

[1] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[2] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[3] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
[4] Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. 金属学报, 2015, 51(12): 1449-1456.
[5] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[6] MA Pinkui, SONG Yuquan. BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING[J]. 金属学报, 2014, 50(4): 471-478.
[7] GUAN Zhiping, MA Pinkui, SONG Yuquan. ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION[J]. 金属学报, 2013, 49(8): 1003-1011.
[8] SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. 金属学报, 2013, 49(11): 1286-1294.
[9] YUAN Chao, ZHOU Lanzhang, LI Gusong, GUO Jianting. CHARACTERISTICS OF A NiAl EUTECTIC ALLOY JJ—3 WITH EXCELLENT PROPERTIES[J]. 金属学报, 2013, 49(11): 1347-1355.
[10] YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. 金属学报, 2012, 48(9): 1123-1131.
[11] CAO Furong DING Hua WANG Zhaodong LI Yinglong GUAN Renguo CUI Jianzhong . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY[J]. 金属学报, 2012, 48(2): 250-256.
[12] WANG Gang XU Lei WANG Yong ZHENG Zhuo CUI Yuyou YANG Rui. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY[J]. 金属学报, 2011, 47(5): 587-593.
[13] XIAO Xuan XIE Yi GUO Jianting. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DIRECTIONALLY SOLIDIFIED NiAl–Cr(Mo)–Hf(Ho) EUTECTIC ALLOY[J]. 金属学报, 2010, 46(6): 701-707.
[14] CAO Furong GUAN Renguo DING Hua LI Yinglong ZHOU Ge CUI Jianzhong. DISLOCATION CREEP IN SUPER–LIGHT α SOLID SOLUTION BASE Mg–6Li–3Zn ALLOY[J]. 金属学报, 2010, 46(6): 715-722.
[15] ZHANG Han BAI Bingzhe FANG Hongsheng. EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL[J]. 金属学报, 2009, 45(9): 1106-1110.
No Suggested Reading articles found!