Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1318-1324    DOI: 10.3724/SP.J.1037.2013.00413
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION
SHENG Liyuan1), ZHANG Wei2), LAI Chen1), GUO Jianting2),XI Tingfei1), YE Hengqiang2)
1) Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION. Acta Metall Sin, 2013, 49(11): 1318-1324.

Download:  PDF(3924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Laves phase strengthening NiAl base composite was fabricated by conventionally casting and rapid solidification, and their microstructure and mechanical properties were investigated together. The results exhibit that the Laves phase in the conventional cast alloy is relative coarse and distributes along the NiAl phase boundary. Moreover, small stick-like Laves phase precipitates in the NiAl phase. Due to the segregation of Ni and Al in Laves phase, it still keeps the C14 crystal structure. The rapid solidification refines the NiAl and Laves phase greatly and promotes the formation of NiAl/Laves phase eutectic structure, which surrounds the NiAl phase and forms the cell-like structure. However, the rapid solidification can not handicap the precipitation of needle-like Laves phase in the NiAl phase. But, the rapid solidification restrains the formation ofα-Cr phase. The compression tests show that the cell-like Laves phase strengthening NiAl base composite has better mechanical properties at ambient and elevated temperature, compared with the conventional cast alloy. The improvement of mechanical properties should be attributed to the cell-like Laves phase and the nanocrystallization of the cell-like Laves phase during high-temperature deformation.

Key words:  NiAl      Laves phase      rapid solidification      microstructure      mechanical properties     
Received:  16 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00413     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1318

[1] Miracle D B.  Acta Metall Mater, 1993; 41: 649

[2] Guo J T.  Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104
(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 104)
[3] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q.  Mater Sci Eng, 2012; A555: 131
[4] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q.  Mater Sci Eng, 2011; A528: 8324
[5] Cline H E, Walter J L.  Metall Trans, 1970; 1: 2907
[6] Sheng L Y, Guo J T, Zhang W, Xie Y, Zhou L Z, Ye H Q.  Acta Metall Sin, 2009; 45: 1025
(盛立远, 郭建亭, 章炜, 谢亿, 周兰章, 叶恒强. 金属学报, 2009; 45: 1025)
[7] Chen X F, Johnson D R, Noebe R D, Olliver B F.  J Mater Res, 1995; 10: 1159
[8] Zeumer B, Sauthoff G.  Intermetallics, 1997; 5: 641
[9] Johnson D R, Chen X F, Oliver B F, Noebe R D, Whittenberger J D.Intermetallics, 1995; 3: 141
[10] Sheng L Y, Guo J T, Ye H Q.  Mater Des, 2009; 30: 964
[11] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q.  Mater Des, 2011; 32: 4810
[12] Sheng L Y, Guo J T, Ren W L, Zhang Z X, Ren Z M, Ye H Q.  Intermetallics, 2011; 19: 143
[13] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T.  Trans Nonferrous Met Soc China, 2013; 23: 983
[14] Kazantzis A V, Aindow M, Jones I P.  Mater Sci Eng, 1997; A233: 44
[15] Bewlay B P, Sutliff J A, Jackson M R, Lipsitt H A.  Acta Metall Mater, 1994; 42: 2869
[16] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T.  Intermetallics, 2012; 27: 14
[17] Sheng L Y, Zhang W, Guo J T, Zhou L Z, Ye H Q.  Intermetallics, 2009; 17: 1115
[18] Sheng L Y, Guo J T, Xi T F, Zhang B C, Ye H Q.  Prog Nat Sci: Mater Int, 2012; 22: 231
[19] Sheng L Y, Zhang W, Guo J T, Ye H Q.  Mater Charact, 2009; 60: 1311
[20] Takeyama M, Liu C T.  Mater Sci Eng, 1991; A132: 61
[21] Lu K, Lu L, Suresh S.  Science, 2009; 324: 349
[22] Sheng L Y, Zhang W, Guo J T, Yang F, Liang Y C, Ye H Q.  Intermetallics, 2010; 18: 740
[23] Sheng L Y, Yang F, Xi T F, Guo J T.  J Alloys Compd, 2013; 554: 182
[24] Sheng L Y, Yang F, Guo J T, Xi T F, Ye H Q.  Composites, 2013; 45B: 785
[25] Zhang J H, Leng Z, Liu S J, Li J Q, Zhang M L, Wu R Z.  J Alloys Compd, 2011; 509: 7717
[26] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ye H Q.  Mater Des, 2009; 30: 2752
[27] Roland J C, Reis D, Vian B, Roy S.  Biol Cell, 1989; 67: 209
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!