Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1123-1128    DOI: 10.3724/SP.J.1037.2011.00252
论文 Current Issue | Archive | Adv Search |
WANG Hongyan, LIN Xin, WANG Lilin, MA Liang, YANG Donghui, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Download:  PDF(1953KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The most important characteristic of semi-solid processing is that the solidification microstructure changes markedly from dendritic growth under traditional conditions to non-dendritic or globular growth, which results in apparent viscosity greatly reduction. In another hand, semi-solid slurry shows admirable fluidity compared with traditional processing slurry. With the intensive development of semi-solid meta1 processing technology, the interaction between melt flow and solidification microstructure becomes gradually one of the important fundamental research fields in materials science. In the previous work, it is very difficult to measure apparent viscosity and observe microstructure of semi-solid simultaneity using opaque metal materials. Conclusions of rheological behavior and microstructure evolution in semi-solid processing can be drawn qualitatively. Because of the metal materials not transparency and the researches on microstructure only after quenching, it is difficult to measure rheological behavior and observe dynamic microstructure evolution simultaneously. Therefore, it is also hard to grasp the coupling effect on rheology and microstructure of semi-solid alloy, which has affected the understanding and controlling accurately on solid forming process. In present paper, the coupling effect of shear rate and the processing (continuous cooling and remelted) processes on the rheology and microstructure of semi-solid SCN-5H2O (molar fraction, %) transparent model alloys were investigated using rotating viscometer. It is found that the increase of shear rate will lead the apparent viscosity of the semi-solid alloy to present a transient shear-thickening and steady shear-thinning behavior, correspondingly, the size of non-dendritic microstructure decreases and the distribution of aggregate becomes more disperse with increasing the shear rate, while, the shape factor of the non-dendritic microstructure changes little; a larger particle size and slightly lower shape factor for non-dendritic microstructure were obtained in the semi-solid alloy slurry made by re-melted process on comparison with that by continuous cooling process, meanwhile, the aggregation of the aggregates becomes stronger, which also results in that the apparent viscosity of the semi-solid alloy slurry made by re-melted process is larger than that by continuous cooling process.
Key words:  semi-solid processing      rheology      apparent viscosity      microstructure     
Received:  19 April 2011     



Supported by National Natural Science Foundation of China (No.50771083), National Basic Research Program of China (No.2011CB610402) and Fund of State Key Laboratory of Solidification Processing (NWPU) (No.02-TZ-2008)

Corresponding Authors:  LIN Xin     E-mail:

Cite this article: 


URL:     OR

[1] Fan Z. Int Mater Rev, 2002; 47: 49

[2] Flemings M C. Metall Trans, 1991; 22B: 957

[3] Mao W M. Semi–Solid Forming of Metals. Beijing: China Machine Press, 2004: 4

(毛卫民. 半固态金属成形技术. 北京: 机械工业出版社, 2004: 4)

[4] Li T, Huang W D, Lin X. Chin J Nonferrous Met, 2000; 10: 635

(李涛, 黄卫东, 林 鑫. 中国有色金属学报, 2000; 10: 635)

[5] Turng L S, Wang K K. J Mater Sci, 1991; 26: 2173

[6] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3: 1925

[7] Liu T Y, Atkinson H V, Ward P J, Kirkwood D H. Metall Mater Trans, 2003; 34A: 409

[8] Martinez R A, Karma A, Flemings M C. Metall Mater Trans, 2006; 37A: 2807

[9] Jackson K A. In: Doremus R H, Roberts B W, Turnbull D eds., Proc of Int Conf Crystal Growth, New York: John Wiley&Sons Inc., 1958: 319

[10] Kauerauf B, Zimmermann G, Murmann L, Rex S. Cryst Growth, 1998; 193: 702

[11] Li T. PhD Thesis, Xi’an: Northwestern Polytechnical University, 2003

(李涛. 西北工业大学博士学位论文. 西安, 2003)

[12] Trivedi R, KurzW. Int Mater Rev, 1994; 39: 49

[13] Boettinger W J, Coriell S R, Greer A L, Karmaa A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[14] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57: 941

[15] Chen H Z. Viscosity Measurement. 2nd Ed., Beijing: China Metrology Publishing House, 1994: 289

(陈惠钊. 粘度测量. 北京: 中国计量出版社, 1994: 289)

[16] Joly P A, Mehrabian R. Mater Sci, 1976; 11: 1393

[17] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publications, 1998: 125

[18] Modigell M, Koke J. Mech Time–Depend Mater, 1999; 3: 15

[19] Mao W M, Run S J, Zhen Z S, Zhong X Y. Acta Metall Sin, 2005; 41: 191

(毛卫民, 闰时建, 甄子胜, 钟雪友. 金属学报, 2005; 41: 191)
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!