Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1117-1122    DOI: 10.3724/SP.J.1037.2011.00217
论文 Current Issue | Archive | Adv Search |
EFFECT OF DEFORMATION TEMPERATURE ON TENSILE DEFORMATION MECHANISM OF Fe-23Mn-2Al-0.2C TWIP STEEL
QIN Xiaomei, CHEN Liqing, DI Hongshuang, DENG Wei
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

QIN Xiaomei CHEN Liqing DI Hongshuang DENG Wei. EFFECT OF DEFORMATION TEMPERATURE ON TENSILE DEFORMATION MECHANISM OF Fe-23Mn-2Al-0.2C TWIP STEEL. Acta Metall Sin, 2011, 47(9): 1117-1122.

Download:  PDF(3304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Twinning-induced plasticity (TWIP) steel can be classified into three types, Fe-Mn-Al-Si, Fe-Mn-C and Fe-Mn-Al-C steels. Owing to their high strength, superior plasticity and good formability, they have potential applications in automobile manufacturing industry as a new generation of steels. In order to reveal the dependence of deformation mechanism on temperature for Fe-23Mn-2Al-0.2C TWIP steel, microstructural observation, stacking fault energy calculation and tensile deformation experiments were performed at a temperature range from -60 ℃ to 600 ℃. With increasing the deformation temperature, the strength and elongation to failure of this steel firstly decrease, then increase and finally decrease. And their peak values appear at 300 ℃ during high temperature deformation. As deformation temperature increased from -60 ℃ to 600℃, the stacking fault energy of the steel increases and the deformation mechanism is changed from twining to slipping. Deformation twins with high density appear at lower deformation temperatures, however, they will gradually decrease with increasing temperature. When the sample was deformed at 600 ℃, only dislocations and dislocation cells appear. High-density deformation twins formed during low-temperature deformation result in the high tensile strength and elongation to failure in this steel.
Key words:  TWIP steel      deformation mechanism      deformation temperature      deformation twin      stacking fault energy     
Received:  07 April 2011     
ZTFLH: 

TG142.25

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB606306-2) and Fundamental Research Funds for the Central Universities (No.N100507003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00217     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1117

[1] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[2] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438

[3] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M. J Phy IV, 2006; 134: 1301

[4] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391

[5] Wang S H, Liu Z Y, Wang G D. Acta Metall Sin, 2009; 45: 1083

(王书晗, 刘振宇, 王国栋. 金属学报, 2009; 45: 1083)

[6] Hamada A S, Karjalainen L P, Somani M C. Mater Sci Eng, 2007; A467: 114

[7] Huang B X, Wang X D, Wang L, Rong Y H. Metall Mater Trans, 2008; 39A: 717

[8] Lu F Y, Yang P, Meng L, Mao W M. Acta Metall Sin, 2010; 46: 1153

(鲁法云, 杨平, 孟 利, 毛卫民. 金属学报, 2010; 46: 1153)

[9] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196

[10] Chen L, Kim H S, Kim S K, Cooman B C. ISIJ Int, 2007; 47: 1804

[11] Jim´enez J A, Frommeyer G. Mater Charact, 2010; 61: 221

[12] Renard K, Ryelandt S, Jacquies P J. Mater Sci Eng, 2010; A527: 2969

[13] Brahmi A, Borrelly R. Acta Mater, 1997; 45: 1889

[14] Frommeyer G, Brux U. Steel Res Int, 2006; 77: 627

[15] Yoo J D, Park K T. Mater Sci Eng, 2008; A496: 417

[16] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483–484: 184

[17] Ehab E D, Surya R K, Roger D D. Metall Mater Trans, 1999; 30A: 1223

[18] Surya R K. Int J Plast, 1998; 14: 1265
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[7] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[12] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[13] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[14] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[15] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
No Suggested Reading articles found!