Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 865-871    DOI: 10.3724/SP.J.1037.2011.00106
论文 Current Issue | Archive | Adv Search |
EFFECT OF Nb ON THE CORROSION RESISTANCE OF Zr-4 ALLOY IN SUPERHEATED STEAM AT 500 ℃
YAO Meiyi,  LI Shilu, ZHANG Xin, PENG Jianchao, ZHOU Bangxin, ZHAO Xushan, SHEN Jianyun
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
3) General Research Institute for Nonferrous Metal, Beijing 100088
Cite this article: 

YAO Meiyi LI Shilu ZHANG Xin PENG Jianchao ZHOU Bangxin ZHAO Xushan SHEN Jianyun. EFFECT OF Nb ON THE CORROSION RESISTANCE OF Zr-4 ALLOY IN SUPERHEATED STEAM AT 500 ℃. Acta Metall Sin, 2011, 47(7): 865-871.

Download:  PDF(1073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion resistance of Zr-4+xNb alloys (x=0.1-0.3, mass fraction, %) was investigated in a superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. The microstructure of the alloys and fracture surface morphology of the oxide film formed on the alloys were observed by TEM and SEM, respectively. Results show that no nodular corrosion appears on Zr-4+xNb alloys in 500 ℃/10.3 MPa superheated steam even for 500 h, which is related to the higher Nb concentration dissolved in α-Zr matrix. The Nb dissolved in α-Zr matrix can restrain the nucleation of nodular corrosion, thus improve the nodular corrosion resistance. The uniform corrosion resistance of Z-4+xNb alloys is lowered with the increase of Nb content, which is related to the decrease of the solid solution concentration of (Fe+Cr) in α-Zr matrix and the precipitation of the second phase particles of Zr(Fe, Cr, Nb)2, and the two aspects will accelerate the microstructural evolution of the oxide film during corrosion process to promote the formation of pores and micro-cracks.
Key words:  zirconium alloy      Nb      nodular corrosion      microstructure     
Received:  03 March 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871064 and 50971084), High Technology Research and Development Program of China (No.2008AA031701), Natural Science Foundation of Shanghai (No.09ZR1411700) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00106     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/865

[1] Liu J Z. Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 112

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 112)

[2] Ogata K. In: Van Swam L F P, Eucken C M, eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, San Diego, CA: ASTM International, 1988: 346

[3] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1129

(周邦新, 李强, 姚美意, 夏爽, 刘文庆,  禇于良. 稀有金属材料与工程, 2007; 36: 1129)

[4] Zhou B X, Zhao W J, Miao Z, Huang D C, Jiang Y R. In: Zhou B X, Shi Y K, eds., Proc III–2 China Nuclear Materials Academic Conference in 1996, Beijing: Chemical Industry Press, 1997: 183

(周邦新, 赵文金, 苗志, 黄德诚, 蒋有荣 著; 周邦新, 石永康主编, 96中国核材料研讨会论文集III-2,北京: 化学工业出版社, 1997: 183)

[5] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317

(周邦新, 姚美意, 李 强, 夏 爽, 刘文庆,  禇于良. 稀有金属材料与工程, 2007; 36: 1317)

[6] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q. Shanghai Met, 2008; 30: 1

(姚美意, 周邦新, 李强, 夏 爽, 刘文庆. 上海金属, 2008; 30: 1)

[7] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364

(周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)

[8] Toffolon–Masclet C, Brachet J C, Jago G. J Nucl Mater, 2002; 305: 224

[9] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版. 北京: 原子能出版社, 2006: 260)

[10] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limb¨ack M, eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Sunriver, Oregon, USA: ASTM International, 2009: 360

[11] Anada H, Takeda K. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 35

[12] Kim H G, Jeong Y H, Kim T H. J Nucl Mater, 2004; 326: 125

[13] Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H. J Nucl Mater, 2003; 323: 72

[14] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1

[15] Hao S M. Thermodynamics of Materials. Beijing: Chemical Industry Press, 2004: 333

(郝士明. 材料热力学. 北京: 化学工业出版社, 2004: 333)

[16] Charquet D. J Nucl Mater, 2001; 288: 237

[17] Li T F. High Temperature Oxidation and Thermal Corrosion of Metals. Beijing: Chemical Industry Press, 2003: 52

(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003: 52)

[18] Bangaru N V. J Nucl Mater, 1985; 131: 280

[19] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. J ASTM Int, 8(1), Paper ID JAI102951, www.astm.org.

[20] Zhou B X. In: Van Swam L F P, Eucken C M, eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, San Diego, CA: ASTM International, 1988: 360

[21] Zhou B X, Yao M Y, Xia S, Liu W Q. J Shanghai Univ (Nat Sci Ed), 2008; 14: 441

(周邦新, 姚美意, 李 强, 夏 爽, 刘文庆. 上海大学学报(自然科学版), 2008; 14: 441)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!