Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 859-864    DOI: 10.3724/SP.J.1037.2011.00196
论文 Current Issue | Archive | Adv Search |
EFFECT OF ORIGINAL GRAIN SIZE ON THE BOUNDARY NETWORK IN ALLOY 690 TREATED BY GRAIN BOUNDARY ENGINEERING
LIU Tingguang, XIA Shuang, LI Hui, ZHOU Bangxin, CHEN Wenjue
Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

LIU Tingguang XIA Shuang LI Hui ZHOU Bangxin CHEN Wenjue. EFFECT OF ORIGINAL GRAIN SIZE ON THE BOUNDARY NETWORK IN ALLOY 690 TREATED BY GRAIN BOUNDARY ENGINEERING. Acta Metall Sin, 2011, 47(7): 859-864.

Download:  PDF(1300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effect of original grain size on the grain boundary character distribution (GBCD) in alloy 690 after treatment by grain boundary engineering (GBE) was studied using electron backscatter diffraction (EBSD) and orientation image microscopy (OIM). The proportion of low-ΣCSL grain boundary and grain boundary network after GBE are obviously influenced by the original grain size. Optimized GBE grain boundary network after the same annealing process can be obtained by altering the cold work degree based on the original grain size. Thus the microstructure after GBE is influenced by the combined effect of original grain size and deformation amount before annealing. Mean strain of grain is used to express the combined effect. A proper value of mean strain of grain is necessary to achieve the desired GBE grain boundary network.
Key words:  Ni base alloy 690      grain boundary engineering (GBE)      grain size      low-ΣCSL grain boundarygrain boundary network     
Received:  02 April 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50974148), National Basic Research Program of China (No.2011CB610502) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00196     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/859

[1] Diercks D R, Shack W J, Muscar J. Nucl Eng Des, 1999; 194: 19

[2] Watanable T. Res Mech, 1984; 11: 47

[3] Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. Cambridge: Cambridge University Press, 1996: 91

[4] Lin P, Palumbo G, Erb U, Aust K T. Scr Metall Mater, 1995; 33: 1387

[5] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantschger K, Vincze A. J Power Sources, 1999; 78: 79

[6] Randle V. Acta Mater, 2004; 52: 4067

[7] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331

[8] Kumar M, Schwartz A J, King W E. Acta Mater, 2002; 50: 2599

[9] Engelberg D L, Humphreys F J, Marrow T J. J Microsc, 2008; 230: 435

[10] Saylor D M, El–Dasher B S, Adams B L, Rohrer D S. Metall Mater Trans, 2004; 35A: 1981

[11] Gertsman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589

[12] Marrow T J, Babout L, Jivkov A P, Wood P, Engelberg D, Stevens N, Withers P J, Newman R C. J Nucl Mater, 2006; 352: 62

[13] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019

[14] Wang W G, Zhou B X, Rohrer G S, Guo H, Cai Z X. Mater Sci Eng, 2010; A527: 3695

[15] King W E, Schwartz A J. Scr Mater, 1998; 38: 449

[16] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin, 2006; 42: 129

(夏爽, 周邦新, 陈文觉, 王卫国. 金属学报, 2006; 42: 129)

[17] Zhang Y B, Godfrey A, Liu W, Liu Q. Acta Metall Sin, 2009; 45: 1159

(张玉彬, Godfrey A, 刘伟, 刘庆. 金属学报, 2009; 45: 1159)

[18] Cai Z X, Wang W G, Fang X Y, Guo H. Acta Metall Sin, 2010; 46: 769

(蔡正旭, 王卫国, 方晓英, 郭红. 金属学报, 2010; 46: 769)

[19] Xia S, Zhou B X, Chen W J, Yao M Y, Li Q, Liu W Q, Wang J A, Ni J S, Chu Y L, Luo X, Li H. Chin Pat, 200710038731.5, 2007

(夏爽, 周邦新, 陈文觉, 姚美意, 李 \ \ 强, 刘文庆, 王均安, 倪建森, 褚于良, 罗 鑫, 李 慧. 中国专利, 200710038731.5, 2007)

[20] Xia S, Li H, Liu T G, Zhou B X. J Nucl Mater, doi: 10.1016/j.jnucmat.2011.06.017

[21] Xia S, Li H, Hu C L, Liu T G, Zhou B X, Chen W J. Fontevraud 7: Int Symp Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Avignon, France: 2010: A025 T06 (CD–ROM)

[22] Palumbo G, Aust K T. Acta Metall, 1990; 38: 2343

[23] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40: 3016

[24] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990

[25] Xia S, Zhou B X, Chen W J, Luo X, Li H. Mater Sci Forum, 2010; 638–642: 2870

[26] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen WJ, Wang N. Corros Sci, 2011; 53: 1880

[27] Humphreys F J, Bate P S, Hurley P J. J Microsc, 2001; 201: 50

[28] Yang P. Electron Backscattering Diffraction Technique and its Application. Beijing: Metallurgical Industry Press, 2007: 73

(杨平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 73)

[29] Berger A, Wilbrandt P J, Ernst F, Klement U, Haasen P. Prog Mater Sci, 1988; 32: 1

[30] Gertsman V Y, Henager C H. Interface Sci, 2003; 11: 403

[31] Doherty R D, Hughes D A, Humphreys F J, Jona J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[10] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[11] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[12] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[13] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
[15] HOU Danhui, LIANG Songmao, CHEN Rongshi, DONG Chuang. SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS[J]. 金属学报, 2014, 50(5): 601-609.
No Suggested Reading articles found!