Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (1): 39-45    DOI:
Current Issue | Archive | Adv Search |
IN SITU TEM OBSERVATION OF SCC IN 310 STAINLESS STEEL
HUANG Yizhong; CHEN Qizhi; CHU Wuyang (University of Science and Technology Beijing; Beijing 100083)(Manuscript received 1995-03-28; in revised form 1995-07-03)
Cite this article: 

HUANG Yizhong; CHEN Qizhi; CHU Wuyang (University of Science and Technology Beijing; Beijing 100083)(Manuscript received 1995-03-28; in revised form 1995-07-03). IN SITU TEM OBSERVATION OF SCC IN 310 STAINLESS STEEL. Acta Metall Sin, 1996, 32(1): 39-45.

Download:  PDF(595KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The in situ TEM observations of dislocation emission, motion and the initiation of nanocrack in 310 stainless steel in water were carried out. Using a special constant deflection device,the dislocation configuration change ahead of a loaded crack tip before and after anodic dissolution in the the deionized water and the initiation, propagation of nanometre scale stress corrosion cracks have been oberved. The results showed that SCC in thin foil specimen of 310 stainless steel can occur in water.The localized anodic dissolution of 310 stainless steel in water at room temperature facilitated dislocation emission, multipication and motion. A nanocrack initated in the DFZ or at the blunted crack tip in corrosion solution after dislocations emission, multiplication and motion reached critical condition. Because of the influence of the corrosion solution, the nanocrack propagates and forms a cleavage microcrack during stress corrosion instead of blunting into a void as it does during a tension test without solution.Correspondent: HUANG Yizhong,(Department of Materials Physics, University of Science and Technology Beijing,Beijing 100083)
Key words:  310 stainless steel      TEM      dislocation      anodic dissolution     
Received:  18 January 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I1/39

1乔利杰,褚武扬,肖纪美.金属学报,1987;23:A2282乔利杰,缪辉俊,褚武扬,肖纪美.中国科学A,1991;12;12183QiaoLJ,ChuWY,HiaoCM.Corrosion,1987;43:4794QiaoLJ,ChuWY,HiaoCM.Corrosion,1988,44:505ChuWY,WangHL,HiaoCM.Corrosion,1984;40:4876褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988:3167SieradzkiK,NewmanRC.PhilMag,1985;51:958GalveleJR.CorrosSci,1987;27:19KanfmanMJ,FinkJI.ActaMetall.1985;36:221310MagninT,ChieragattiR,OltraR.ActaMetallMater.1990;38:131311JonesDA.MetallTrans.1985;16A:113312黄一中,陈奇志,褚武杨,袁昌言.金属学报,1994;30:B45213OhrSM.MaterSciEng,1985;72:114陈奇志,褚武扬,肖纪美.中国科学,1994;A24:291
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[8] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[9] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[10] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[11] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[12] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[13] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[14] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[15] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
No Suggested Reading articles found!