Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 679-692    DOI: 10.11900/0412.1961.2022.00003
Current Issue | Archive | Adv Search |
Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism
WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan()
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Cite this article: 

WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism. Acta Metall Sin, 2023, 59(5): 679-692.

Download:  HTML  PDF(2933KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

W is usually used as plasma-facing components in nuclear fusion reactors because of its high melting point, low sputtering yield, high-temperature strength, and low tritium retention properties. On the other hand, Cu and its alloys show excellent thermal conductivity making them ideal as a heat sink material in reactors. Therefore, W-Cu layered composites have important applications in nuclear fusion reactors. Due to the immiscibility between W and Cu, direct alloying between them without using interlayer metals is critical for the preparation of such layered composites. In this study, a nanoporous active structure was used to induce and promote the direct alloying of the W-Cu system. Direct alloying consists of three steps. First, a nanoporous active layer is prepared on the surface of a W foil via two-step anodizing and deoxidized annealing in a hydrogen atmosphere. Second, a Cu coating layer is deposited on the nanoporous W by electroplating. Finally, the obtained W-Cu electrodeposited sample is annealed at temperatures close to the melting point of Cu (i.e., 980oC). The established thermodynamic model for the direct alloying of immiscible metal systems is used for the direct alloying of W and Cu based on a nanoporous active structure. There are two problems with this model. First, the surface energy results are arbitrary due to the selection of the number of surface atomic layers. Second, the unit scale in thermodynamic calculations. To solve these problems, the calculation methods for surface energy and pressure energy are improved in this work, which makes the thermodynamic calculation for the direct alloying of W-Cu based on a nanoporous active structure feasible. The results show that a nanoporous active structure is formed on the surface of W after nanotreatment. The characterization results of the W/Cu interface show that the diffusion distance between the two metals is about 27 nm and the direct alloying between W and Cu is successful. The average shear strength of the W-Cu layered composites was 101 MPa. This is a 16% increase compared with W-Cu layered composites without a nanoporous structure. The thermodynamic calculation results show that the surface energy of the W-Cu system is greatly improved due to the nanoporous active structure prepared on the W surface. The surface energy can be used as the main thermodynamic driving force for the direct alloying of W-Cu systems. There are different reasons why nanotreatment increases W surface energy. One reason is the increase of crystal planes with high surface energy via nanotreatment of the W surface, and another is the shape of the nanoporous structure.

Key words:  immiscible W-Cu system      nanoporous structure      direct alloying      thermodynamic model      surface energy     
Received:  04 January 2022     
ZTFLH:  TG146.4  
Fund: National Key Research and Development Program of China(2018YFB0703904);National Key Research and Development Program of China(2017YFE0302600)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00003     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/679

Fig.1  Surface SEM images and corresponding EDS results (insets) (a, c) and cross-section SEM images of W plate (b, d) with nanoporous structure layer prepared through two-step anodizing process without (a, b) and with (c, d) deoxidation process
Fig.2  Linear sweep voltammetry (LSV) curves of the nanoporous W plate and the pretreated W plate (RHE—reversible hydrogen electrode)
Fig.3  High-angle annular dark field (HAADF) image of W/Cu interface (a), atomic fraction along the red arrow marked in Fig.3a (b), and elemental mappings of W (c) and Cu (d)
Color online
Fig.4  HRTEM image of W/Cu interface (Inset I shows the fast Fourier transform (FFT) pattern from the darker area and inset II shows the brighter one, d—interplanar spacing)
Fig.5  Stress-strain curves of shear strength of W/Cu layered composites prepared based on nano active structure (a) and pretreated W block (b)
Fig.6  SEM image of shear fracture surface (W side) of the W/Cu layered composite (a); EDS analysis results of the region marked with rectangles I (b), II (c), and III (d)
Fig.7  SEM image of shear fracture surface (Cu side) of the W/Cu layered composite (a), and EDS analysis result of the region marked with the rectangle in Fig.7a (b)
Fig.8  XRD spectra of W without nanopores (a), nanoporous W (b), and Cu plating layer (c)
MetalEsurf (110)Esurf (111)Esurf (200)Esurf (211)Esurf (220)
W48.16-85.4192.47100.33
Cu-48.1618.70-13.24
Table 1  Surface energy (Esurf) of crystal faces contained on the surface of W and Cu based on the first-principles and new formula of surface energy
ElementV2/3nws-1/3φγEKGSfγS,0ρMTm
cm2(d.u.)1/3VGPaGPaGPa105 m2mJ·m-2g·cm-3g·mol-1K
Cu3.701.474.450.343129.8137.848.31.6718258.9663.551356
W4.501.814.800.280411.0160.6311.02.03367519.32183.843680
Table 2  Parameters used in thermodynamic calculation for the W-Cu direct alloying[25,42]
Fig.9  Calculated energy curves of W-Cu direct alloying processes based on nano active structure for the W-Cu systems (ΔGalloyingc—Gibbs free energy for the formation of W/Cu crystalline phase, ΔGalloyinga—Gibbs free energy for the formation of W/Cu amorphous phase, Einitial,W—initial energy of W-Cu system without nano-treatment, Einitial,nano—initial energy of W-Cu system with nano-treatment)
(a) without pressure
(b) under 106 MPa pressure
Fig.10  Origin shape of W nanoporous with convex structure (a), concave structure (b, c), structural diagram and cross-section of simplified geometric models of Figs.10a and c (d, e), and geometry model for the W plate without nano-treatment (f) (D—nanopore diameter, dsurf—the thickness of the surface layer in a metal that provides surface energy, h0—the height of a cylinder in the convex or concave structure, h1—the height of a cone in the convex or concave structure, h2—obtained from h1 ± dsurf, R1—the bottom radius of cylinder and cone in the convex or concave structure, R2—obtained from R1 ± dsurf, a—the side length of the model of W plate without nano-treatment)
Fig.11  Fine-scale density profiles (ρ(Z)) for W and Cu near and at the W/Cu interface constructed through direct alloying at different temperatures
1 Tsunematsu T, Nagami M. Status of the ITER project[J]. J. Plasma Fusion Res., 2002, 5: 137
2 Philipps V. Tungsten as material for plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2011, 415: S2
doi: 10.1016/j.jnucmat.2011.01.110
3 Hu J S, Zuo G Z, Wang L, et al. Brief review of the interactions between plasma and walls in magnetic controlled fusion devices[J]. J. Univ. Sci. Technol. China, 2020, 50: 1193
胡建生, 左桂忠, 王 亮 等. 磁约束核聚变装置等离子体与壁相互作用研究简述[J]. 中国科学技术大学学报, 2020, 50: 1193
4 Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Eng. Des., 2007, 82: 521
doi: 10.1016/j.fusengdes.2007.03.045
5 Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Mater. Trans., 2005, 46: 412
doi: 10.2320/matertrans.46.412
6 Bolt H, Barabash V, Krauss W, et al. Materials for the plasma-facing components of fusion reactors[J]. J. Nucl. Mater., 2004, 329-333: 66
doi: 10.1016/j.jnucmat.2004.04.005
7 Pintsuk G, Smid I, Döring J E, et al. Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions[J]. J. Mater. Sci., 2007, 42: 30
doi: 10.1007/s10853-006-1039-y
8 Mitteau R, Missiaen J M, Brustolin P, et al. Recent developments toward the use of tungsten as armour material in plasma facing components[J]. Fusion Eng. Des., 2007, 82: 1700
doi: 10.1016/j.fusengdes.2007.01.003
9 Batra I S, Kale G B, Saha T K, et al. Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer[J]. Mater. Sci. Eng., 2004, A369: 119
10 Wang C B, Shen Q, Zhou Z G, et al. Diffusion welding of 93W alloy to OFC and structural control of 93W/OFC joint[J]. J. Mater. Sci., 2005, 40: 2105
doi: 10.1007/s10853-005-1247-x
11 Tokitani M, Hamaji Y, Hiraoka Y, et al. Deformation and fracture behavior of the W/ODS-Cu joint fabricated by the advanced brazing technique[J]. Fusion Eng. Des., 2019, 146: 1733
doi: 10.1016/j.fusengdes.2019.03.027
12 Peng S X, Mao Y W, Min M, et al. Joining of tungsten to CuCrZr alloy with Cu-TiH2-Ni filler and Cu interlayer[J]. Int. J. Refract. Met. Hard Mater., 2019, 79: 31
doi: 10.1016/j.ijrmhm.2018.11.005
13 Bang E, Choi H, Kim H C, et al. Manufacturing and testing of flat type W/Cu/CuCrZr mock-ups by HIP process with PVD coating[J]. Fusion Eng. Des., 2019, 146: 603
doi: 10.1016/j.fusengdes.2019.01.034
14 Mou N Y, Han L, Yao D M, et al. Manufacturing and high heat flux testing of flat-type W/Cu/CuCrZr mock-up by HIP assisted brazing process[J]. Fusion Eng. Des., 2021, 169: 112670
doi: 10.1016/j.fusengdes.2021.112670
15 Niu Y R, Lu D, Huang L P, et al. Comparison of W-Cu composite coatings fabricated by atmospheric and vacuum plasma spray processes[J]. Vacuum, 2015, 117: 98
doi: 10.1016/j.vacuum.2015.04.015
16 Zhou Z J, Guo S Q, Song S X, et al. The development and prospect of fabrication of W based plasma facing component by atmospheric plasma spraying[J]. Fusion Eng. Des., 2011, 86: 1625
doi: 10.1016/j.fusengdes.2011.04.022
17 Song J P, Yu Y, Zhuang Z G, et al. Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components[J]. J. Nucl. Mater., 2013, 442: S208
doi: 10.1016/j.jnucmat.2013.01.326
18 Dai D, Wu M L, Shu S C, et al. Thermal CVD growth of graphene on copper particles targeting tungsten-copper composites with superior wear and arc ablation resistance properties[J]. Diam. Relat. Mater., 2020, 104: 107765
doi: 10.1016/j.diamond.2020.107765
19 Ibrahim A, Abdallah M, Mostafa S F, et al. An experimental investigation on the W-Cu composites[J]. Mater. Des., 2009, 30: 1398
doi: 10.1016/j.matdes.2008.06.068
20 Perez-Soriano E M, Arévalo C, Montealegre-Meléndez I, et al. Influence of starting powders on the final properties of W-Cu alloys manufactured through rapid sinter pressing technique[J]. Powder Metall., 2021, 64: 75
doi: 10.1080/00325899.2020.1847847
21 Saito S, Fukaya K, Ishiyama S, et al. Mechanical properties of HIP bonded W and Cu-alloys joint for plasma facing components[J]. J. Nucl. Mater., 2002, 307-311: 1542
doi: 10.1016/S0022-3115(02)01169-8
22 Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range[J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
23 Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to copper's melting point[J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
24 Du J L, Li C, Wang Z M, et al. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism[J]. J. Mater. Sci. Technol., 2021, 65: 18
doi: 10.1016/j.jmst.2020.04.083
25 Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method[J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
26 Zhang J, Huang Y, Wang Z M, et al. Preparation of a nanoporous active tungsten foil by two-step anodizing and deoxidized annealing for hydrogen evolution reaction[J]. Nanotechnology, 2019, 30: 015603
27 Li F, Chen Y Y, Chen X, et al. The improvement of bonding strength of W/Cu joints via nano-treatment of the W surface[J]. Metals, 2021, 11: 844
doi: 10.3390/met11050844
28 Zhao C, Li F, Chen Y Y, et al. Joining of oxygen-free high-conductivity Cu to CuCrZr by direct diffusion bonding without using an interlayer at low temperature[J]. Fusion Eng. Des., 2020, 151: 111400
doi: 10.1016/j.fusengdes.2019.111400
29 Huang Y, Du J L, Wang Z M. Progress in research on the alloying of binary immiscible metals[J]. Acta Metall. Sin., 2020, 56: 801
doi: 10.11900/0412.1961.2019.00451
黄 远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56: 801
30 Li Y G. Physical Chemistry[M]. Shanghai: Fudan University Press, 2013: 20
李元高. 物理化学[M]. 上海: 复旦大学出版社, 2013: 20
31 Pan C H. Development of surface analytical instruments abroad[J]. Anal. Instrum., 1980, (suppl.1) : 31
doi: 10.1081/CI-120018402
潘承璜. 国外表面分析仪器的进展[J]. 分析仪器, 1980, (): 31
32 Chen X Y, Zhang P F, Liu Y C, et al. Nanoconical active structures prepared by anodization and deoxidation of molybdenum foil and their activity origin[J]. J. Alloys Compd., 2021, 851: 156896
doi: 10.1016/j.jallcom.2020.156896
33 Fan X. X-Ray Metallography[M]. Beijing: China Machine Press, 1981: 16; 23
范 雄. X射线金属学[M]. 北京: 机械工业出版社, 1981: 16; 23
34 Mai Z H. X-Ray Characterization of Thin Film Structure[M]. 2nd Ed., Beijing: Science Press, 2015: 20
麦振洪. 薄膜结构X射线表征[M]. 第2版. 北京: 科学出版社, 2015: 20
35 Han L, Jeurgens L P H, Cancellieri C, et al. Anomalous texture development induced by grain yielding anisotropy in Ni and Ni-Mo alloys[J]. Acta Mater., 2020, 200: 857
doi: 10.1016/j.actamat.2020.09.063
36 Zeng T, Li F, Huang Y. Construction of an n-body potential for revealing the atomic mechanism for direct alloying of immiscible tungsten and copper[J]. Materials, 2021, 14: 5988
doi: 10.3390/ma14205988
37 Gan X L, Xiao S F, Deng H Q, et al. Atomistic simulations of the Fe(001)-Li solid-liquid interface[J]. Fusion Eng. Des., 2014, 89: 2894
doi: 10.1016/j.fusengdes.2014.06.018
38 Yang Y, Olmsted D L, Asta M, et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Mater., 2012, 60: 4960
doi: 10.1016/j.actamat.2012.05.016
39 Xu C, Meng X C, Sun X G, et al. Atomic scale analysis of the corrosion characteristics of Cu-Li solid-liquid interfaces[J]. J. Alloys Compd., 2018, 763: 1
doi: 10.1016/j.jallcom.2018.05.320
40 Luo M Z, Liang L, Lang L, et al. Molecular dynamics simulations of the characteristics of Mo/Ti interfaces[J]. Comput. Mater. Sci., 2018, 141: 293
doi: 10.1016/j.commatsci.2017.09.039
41 Laursen A B, Kegnæs S, Dahl S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5: 5577
doi: 10.1039/c2ee02618j
42 Liu B X, Lai W S, Zhang Z J. Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modelling[J]. Adv. Phys., 2001, 50: 367
doi: 10.1080/00018730110096112
43 Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA)[J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
44 Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin[J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
45 Sun M H, Wei J K, Xu Z, et al. Electrochemical solid-state amorphization in the immiscible Cu-Li system[J]. Sci. Bull., 2018, 63: 1208
doi: 10.1016/j.scib.2018.06.021
[1] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] SHI Yongjuan REN Yibin ZHANG Bingchun YANG Ke. THE EFFECT OF PASSIVATION ON THE HAEMOCOMPATIBILITY OF 316L STAINLESS STEEL[J]. 金属学报, 2011, 47(12): 1575-1580.
[4] . A Model for Calculating Solubility of Hydrogen in Molten Alloys[J]. 金属学报, 2008, 44(2): 129-133 .
[5] . First-Principles Study of IVB and VB transition metal carbides and their surfaces[J]. 金属学报, 2006, 42(5): 554-560 .
[6] WANG Xiaochun; JIA Yu; YAO Qiankai; WANG Fei; MA Jianxin; HU Xing. Molecular Dynamics Simulation of the Surface Energies of High—Index Surfaces in Metals[J]. 金属学报, 2004, 40(6): 589-.
[7] ZHANG Xiaobing. Thermodynamic Modeling for Controls of Deoxidation and Oxide Inclusions in Molten Steel[J]. 金属学报, 2004, 40(5): 509-514 .
[8] SHEN Jianyun; HAO Yaowu; ZHOU Chuanhua; LING Ling (General Research Institule for Non-Ferrous Metals; Beijing 100088). A MODEL WITH QUANTIFIED ASYMMETRY FOR PREDICTING THERMODYNAMIC PROPERTIES OF TERNARY SYSTEM[J]. 金属学报, 1996, 32(9): 943-948.
[9] SHA Xianwei; ZHANG Xiumu; CHEN Kuiying; LI Yiyi (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). SURFACE ENERGY OF NiAl ALLOY CALCULATED BY MOLECULAR DYNAMICS SIMULATION[J]. 金属学报, 1996, 32(11): 1184-1188.
No Suggested Reading articles found!