Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (3): 335-348    DOI: 10.11900/0412.1961.2022.00400
Overview Current Issue | Archive | Adv Search |
Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review
HAN Weizhong(), LU Yan, ZHANG Yuheng
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review. Acta Metall Sin, 2023, 59(3): 335-348.

Download:  HTML  PDF(2118KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Body-centered-cubic (bcc)-structured metals have excellent physical properties, such as high melting points, high strength and excellent creep resistance, radiation tolerance, and good compatibility with liquid metals, which are widely used in high-tech fields, such as nuclear reactors, satellites, aircraft, rockets, and engines. However, their low-temperature brittleness and ductile-to-brittle transition characteristics limit their applications. Therefore, a deep understanding of the ductile-to-brittle transition mechanism is of great significance for regulating the ductile-to-brittle transition behavior of bcc-structured metals. In this review, taking bcc-structured metals as an example, the history of the ductile-to-brittle transition investigations in bcc metals was retrospected, the main research progress on this topic was introduced, the newly developed methods to tune the ductile-to-brittle transition temperature of metals was discussed, and the key points to be focused on in the future was listed.

Key words:  ductile-to-brittle transition      body-centered cubic      metal      dislocation      crack     
Received:  18 August 2022     
ZTFLH:  TG111.91  
Fund: National Natural Science Foundation of China(51971170);National Natural Science Foundation of China(51922082);Programme of Introducing Talents of Discipline to Universities(BP0618008)
About author:  HAN Weizhong, professor, Tel: (029)82664630, E-mail: wzhanxjtu@mail.xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00400     OR     https://www.ams.org.cn/EN/Y2023/V59/I3/335

Fig.1  Different methods for measuring the ductile-to-brittle transition temperature (DBTT)
(a) DBTT measured by Charpy test[56] (L is longitudinal, T is long transverse, and S is short transverse. The first letter (L or T) designates the direction normal to the crack plane, and the second letter (S) the expected direction of crack propagation)
(b) DBTT measured by bending test[3] (Filled symbols represent fracture toughnesses (left axis-K), and open symbols represent stresses at failure, which are normalized by crack length (a) for compatibility with the fracture toughness scale (right axis-σf(a))
(c) DBTT measured by small-punch (SP) test (TSP)[34]
(d) DBTT measured by nanoindentation[16]
Fig.2  The atomic core structures of the a' / 2[111] screw dislocation in body-centered cubic metals[61] (a'—lattice constant)
Fig.3  Double-kink assisted migration of screw dislocation under thermal activation[30] (Up—Peierls barrier, τg—time constant for generating a kink pair, τm—time constant for moving the kinks to the extent of the dislocation line, νs—screw dislocation velocity)
Fig.4  Determination of DBTT according to variation of ductile and brittle fracture probabilities with respect to the inverse of temperature[74]
Fig.5  Dislocation structures in rolled tungsten at different testing temperatures[34] ( b —Burgers vecter)
(a) pre-existing dislocations before testing (b) below DBTT (c) at DBTT (d) above DBTT
Fig.6  Mechanism of the relative mobility of the screw versus edge dislocations controls the DBT in metals[16]
(a) dislocation relative mobility determines the efficiency of dislocation source (TC—critical temperature, ve—edge dislocation velocity, αDBT—the α value at DBTT, α—velocity ratio of screw dislocation and edge dislocation, t0—time before dislocation bow out, t1—time after dislocation bow out)
(b) relative mobility of screw versus edge dislocations with temperature for Cr, Al, W, and Fe
(c) bowing out an edge dislocation to form a half loop (r—dislocation source radius)
(d) bowing out the half loop if vs = 0 (x—distance moved by edge dislocation)
(e) bowing out the half loop with side glide (vs > 0) (y—distance moved by screw dislocation, Aedge—region swept by the edge dislocation, Ascrew—region swept by the screw dislocation)
1 Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
2 Finnie I, Mayville R A. Historical aspects in our understanding of the ductile-brittle transition in steels [J]. J. Eng. Mater. Technol., 1990, 112: 56
3 Gumbsch P, Riedle J, Hartmaier A, et al. Controlling factors for the brittle-to-ductile transition in tungsten single crystals [J]. Science, 1998, 282: 1293
4 Samuels J, Roberts S G, Hirsch P B. The brittle-to-ductile transition in silicon [J]. Mater. Sci. Eng., 1988, A105-106: 39
5 Hirsch P B, Roberts S G, Samuels J. The brittle-ductile transition in silicon. II. Interpretation [J]. Proc. Roy. Soc., 1989, 421A: 25
6 Brede M. The brittle-to-ductile transition in silicon [J]. Acta Metall. Mater., 1993, 41: 211
7 Serbena F C, Roberts S G. The brittle-to-ductile transition in germanium [J]. Acta Metall. Mater., 1994, 42: 2505
8 Franco A, Roberts S G, Warren P D. Fracture toughness, surface flaw sizes and flaw densities in Al2O 3 [J]. Acta Mater., 1997, 45: 1009
9 Ortner S R. The ductile-to-brittle transition in steels controlled by particle cracking [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 752
10 Sharma T, Kumar N N, Mondal R, et al. Ductile-to-brittle transition in low-alloy steel: A combined experimental and numerical investigation [J]. J. Mater. Eng. Perform., 2019, 28: 4275
11 Li L, Jia Z W, Zhang Y F, et al. Ductile-brittle transition temperature of a grain-oriented silicon steel and its influencing factors [J]. Heat Treat. Met., 2021, 46(12): 214
李 莉, 贾志伟, 张一凡 等. 取向硅钢韧脆转变温度及影响因素 [J]. 金属热处理, 2021, 46(12): 214
12 Joseph T D, Tanaka M, Wilkinson A J, et al. Brittle-ductile transitions in vanadium and iron-chromium [J]. J. Nucl. Mater., 2007, 367-370: 637
13 Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
14 Henderson F, Quaass S T, Wain H L. The fabrication of chromium and some dilute chromium-base alloys [J]. J. Inst. Met., 1954, 83: 4400440
15 Gilbert A, Reid C N, Hahn G T. Observation on the fracture of chromium [J]. J. Inst. Met., 1963, 92: 351
16 Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
17 Passmore E M. Correlation of temperature and grain size effects in the ductile-brittle transition of molybdenum [J]. Philos. Mag., 1965, 11A: 441
18 Cox B L, Wiffen F W. The ductility in bending of molybdenum alloys irradiated between 425 and 1000oC [J]. J. Nucl. Mater., 1979, 85-86: 901
19 Johnson A A. The ductile-brittle transition in body-centred cubic transition metals [J]. Philos. Mag., 1962, 7A: 177
20 Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
21 Tarleton E, Roberts S G. Dislocation dynamic modelling of the brittle-ductile transition in tungsten [J]. Philos. Mag., 2009, 89: 2759
22 Giannattasio A, Tanaka M, Joseph T D, et al. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials [J]. Phys. Scr., 2007, 2007: 87
23 Giannattasio A, Roberts S G. Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten [J]. Philos. Mag., 2007, 87: 2589
24 Giannattasio A, Yao Z, Tarleton E, et al. Brittle-ductile transitions in polycrystalline tungsten [J]. Philos. Mag., 2010, 90: 3947
25 Rieth M, Hoffmann A. Influence of microstructure and notch fabrication on impact bending properties of tungsten materials [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 679
26 Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
27 Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
28 Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
29 Bonnekoh C, Hoffmann A, Reiser J. The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to -65oC [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 181
30 Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
31 Bonk S, Hoffmann J, Hoffmann A, et al. Cold rolled tungsten (W) plates and foils: Evolution of the tensile properties and their indication towards deformation mechanisms [J]. Int. J. Refract. Met. Hard Mater., 2018, 70: 124
32 Bonnekoh C, Jäntsch U, Hoffmann J, et al. The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 146
33 Geng X, Luo G N, Wang W J, et al. Measurement of ductile-brittle transition temperature of tungsten materials by four-point bending method and its comparison with other methods [J]. Rare Met. Mater. Eng., 2021, 50: 4089
耿 祥, 罗广南, 王万景 等. 四点弯曲法测量钨材料韧脆转变温度及其与其他测试方法的比较研究 [J]. 稀有金属材料与工程, 2021, 50: 4089
34 Zhang Y H, Han W Z. Mechanism of brittle-to-ductile transition in tungsten under small-punch testing [J]. Acta Mater., 2021, 220: 117332
35 Pszonka A. On the ductile-brittle transition of polycrystalline zinc [J]. Scr. Metall., 1974, 8: 81
36 Booth A S, Roberts S G. The brittle-ductile transition in γ-TiAl single crystals [J]. Acta Mater., 1997, 45: 1045
37 Ebrahimi F, Hoyle T G. Brittle-to-ductile transition in polycrystalline NiAl [J]. Acta Mater., 1997, 45: 4193
38 Ebrahimi F, Shrivastava S. Brittle-to-ductile transition in NiAl single crystal [J]. Acta Mater., 1998, 46: 1493
39 Li L L, Su Y Q, Beyerlein I J, et al. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys [J]. Sci. Adv., 2020, 6: eabb6658
40 Li L L, Beyerlein I J, Han W Z. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73: 61
41 Nikolaev Y V, Kolesov V S, Zubarev P V, et al. Molybdenum and tungsten single crystal alloys with abnormally high creep strength for space nuclear power and propulsion systems [A]. Proceedings of 10th Symposium on Space Nuclear Power and Propulsion [C]. Albuquerque: American Institute of Physics Press, 1993: 267
42 Zee R H, Xiao Z, Chin B A, et al. Processing of single crystals for high temperature applications [J]. J. Mater. Process. Technol., 2001, 113: 75
43 Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components [J]. J. Nucl. Mater., 1998, 258-263: 308
44 Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
45 Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
46 Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
47 Sloan E D. Clathrate Hydrates of Natural Gases [M]. 2nd Ed., New York: Marcel Dekker Inc., 1998: 1
48 Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Mar. Peroleum Geol., 2011, 28: 279
49 Huang X, Wang P K, Pang S J, et al. Future utilization of gas hydrate resources in polar regions [J]. Mar. Geol. Front., 2017, 33(11): 18
黄 霞, 王平康, 庞守吉 等. 极地天然气水合物资源利用前景 [J]. 海洋地质前沿, 2017, 33(11): 18
50 Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29A: 73
51 Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
52 Hartmaier A, Gumbsch P. On the activation energy for the brittle/ductile transition [J]. Phys. Stat. Solidi, 1997, 202B: R1
53 Gu Y F, Harada H, Ro Y. Chromium and chromium-based alloys: Problems and possibilities for high-temperature service [J]. JOM, 2004, 56(9): 28
54 Garzke W H, Foecke T, Matthias P, et al. A marine forensic analysis of the RMS TITANIC [A]. Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition [C]. Providence: IEEE, 2000
55 Li W J, Li Q, Wei L. Application of Charpy impact test on metallic materials [J]. Value Eng., 2018, 37(4): 121
李卫军, 李 庆, 魏 磊. 金属材料夏比冲击试验的应用研究 [J]. 价值工程, 2018, 37(4): 121
56 Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
57 Ding H L. Study on the internal friction and magnetic non-destructive testing method of DBTT for metal materials [D]. Hefei: University of Science and Technology of China, 2018
丁慧丽. 金属材料韧脆转变温度的内耗和磁性无损检测方法研究 [D]. 合肥: 中国科学技术大学, 2018
58 Taylor G I, Elam C F. The distortion of iron crystals [J]. Proc. Roy. Soc., 1926, 112A: 337
59 Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals [J]. Int. Mater. Rev., 2013, 58: 296
60 Cho H, Bronkhorst C A, Mourad H M, et al. Anomalous plasticity of body-centered-cubic crystals with non-Schmid effect [J]. Int. J. Solids Struct., 2018, 139-140: 138
61 Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
62 Vitek V. Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
63 Mrovec M, Gröger R, Bailey A G, et al. Bond-order potential for simulations of extended defects in tungsten [J]. Phys. Rev., 2007, 75B: 104119
64 Hu X S, Huang M S, Li Z H. Nonplanar core structure of 1/2<111> screw dislocations: An anisotropic Peierls-Nabarro model [J]. Mech. Mater., 2021, 156: 103794
65 Dezerald L, Rodney D, Clouet E, et al. Plastic anisotropy and dislocation trajectory in BCC metals [J]. Nat. Commun., 2016, 7: 11695
66 Schoeck G. The Peierls model: Progress and limitations [J]. Mater. Sci. Eng., 2005, A400-401: 7
67 Monnet G, Terentyev D. Structure and mobility of the 1/2<111>{112} edge dislocation in BCC iron studied by molecular dynamics [J]. Acta Mater., 2009, 57: 1416
68 Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
69 Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars [J]. Phys. Rev. Lett., 2009, 103: 105501
70 Magnusson A W, Baldwin W M. Low temperature brittleness [J]. J. Mech. Phys. Solids, 1957, 5: 172
71 Yokobori T. Failure and fracture of metals as nucleation processes [J]. J. Phys. Soc. Jpn., 1952, 7: 44
72 Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅰ [J]. Philos. Mag., 1958, 3A: 1089
73 Heslop J, Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅱ [J]. Philos. Mag., 1958, 3A: 1128
74 Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
75 Hirsch P B, Roberts S G. The brittle-ductile transition in silicon [J]. Philos. Mag., 1991, 64A: 55
76 Brunner D, Glebovsky V. Analysis of flow-stress measurements of high-purity tungsten single crystals [J]. Mater. Lett., 2000, 44: 144
77 Németh A A N, Reiser J, Armstrong D E J, et al. The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 9
78 Solie K E, Carlson O N. Effect of nitrogen on the brittle-ductile transition of chromium [J]. Trans. Metall. Soc. AIME, 1964, 230: 480
79 Cairns R E, Grant N J. The effects of carbon, nitrogen, oxygen and sulfur on the ductile-brittle fracture temperature of chromium [J]. Trans Metall. Soc. AIME, 1964, 230: 1150
80 Farrell K, Schaffhauser A C, Stiegler J O. Recrystallization, grain growth and the ductile-brittle transition in tungsten sheet [J]. J. Less-Common Met., 1967, 13: 141
81 Grujicic M, Zhao H, Krasko G L. Atomistic simulation of 􀰑3 (111) grain boundary fracture in tungsten containing various impurities [J]. Int. J. Refract. Met. Hard Mater., 1997, 15: 341
82 Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
83 Klopp W D. A review of chromium, molybdenum, and tungsten alloys [J]. J. Less-Common Met., 1975, 42: 261
84 Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperature [J]. J. Mater. Sci., 1995, 30: 770
85 Klopp W D, Witzke W R, Raffo P L. Mechanical properties of dilute tungsten-rhenium alloys [R]. Washington: NASA, 1966
86 Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten [J]. Phys. Rev. Lett., 2010, 104: 195503
87 Hu Y J, Fellinger M R, Butler B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten [J]. Acta Mater. 2017, 141: 304
88 Setyawan W, Kurtz R J. Effects of transition metals on the grain boundary cohesion in tungsten [J]. Scr. Mater., 2012, 66: 558
89 Tsuji N, Okuno S, Koizumi Y, et al. Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process [J]. Mater. Trans., 2004, 45: 2272
90 Takaki S, Kawasaki K, Kimura Y. Mechanical properties of ultra fine grained steels [J]. J. Mater. Process. Technol., 2001, 117: 359
91 Hwang B, Kim S J. Grain size dependence of ductile-to-brittle transition temperature of a high-nitrogen Cr-Mn austenitic steel [J]. Mater. Sci. Eng., 2012, A531: 182
92 Rupp D, Mönig R, Gruber P, et al. Fracture toughness and microstructural characterization of polycrystalline rolled tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 669
93 Aleksandro I V, Raab G I, Shestakova L O, et al. Refinement of tungsten microstructure by severe plastic deformation [J]. Phys. Met. Metallogr., 2002, 93: 493
94 Vorhauer A, Pippan R. Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation [J]. Mater. Sci. Forum, 2003, 426-432: 2747
95 Li P, Wang X, Xue K M, et al. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
96 Ha K F, Yang C, Bao J S. Effect of dislocation density on the ductile-brittle transition in bulk Fe-3%Si single crystals [J]. Scr. Metall. Mater., 1994, 30: 1065
97 Zhao M Y, Zhou Z J, Zhong M, et al. Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W-Y2O3 alloy [J]. Mater. Sci. Eng., 2015, A646: 19
98 Zhang T Q, Wang Y J, Zhou Y, et al. Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites [J]. Mater. Sci. Eng., 2009, A512: 19
99 Kurishita H, Matsuo S, Arakawa H, et al. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance [J]. J. Nucl. Mater., 2010, 398: 87
100 Fukuda M, Hasegawa A, Tanno T, et al. Property change of advanced tungsten alloys due to neutron irradiation [J]. J. Nucl. Mater., 2013, 442: S273
101 Miao S, Xie Z M, Zeng L F, et al. Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process [J]. Nucl. Mater. Energy, 2017, 13: 12
102 Lang S T, Yan Q Z, Sun N B, et al. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method [J]. Fusion Eng. Des., 2017, 121: 366
103 Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
104 Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
105 Blagoeva D T, Opschoor J, van der Laan J G, et al. Development of tungsten and tungsten alloys for DEMO divertor applications via MIM technology [J]. J. Nucl. Mater., 2013, 442: S198
106 Ding M S, Du J P, Wan L, et al. Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper [J]. Nano Lett., 2016, 16: 4118
107 Zheng R Y, Jian W R, Beyerlein I J, et al. Atomic-scale hidden point-defect complexes induce ultrahigh-irradiation hardening in tungsten [J]. Nano Lett., 2021, 21: 5798
108 Li J T, Beyerlein I J, Han W Z. Helium irradiation-induced ultrahigh hardening in niobium [J]. Acta Mater., 2022, 226: 117656
109 Yang H, Lozano J G, Pennycook T J, et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning [J]. Nat. Commun., 2015, 6: 7266
110 Song K P, Liu J K, Lu N, et al. Direct atomic-scale imaging of a screw dislocation core structure in inorganic halide perovskites [J]. Phys. Chem. Chem. Phys., 2022, 24: 6393
111 Chu F, Zhong Q P. The essence and relation of ductile-brittle evaluate criterions of metals [J]. J. Beijing Univ. Aeronaut. Astronaut., 1992, (2): 120
初 飞, 钟群鹏. 金属韧脆转移评定标准的本质及其相互关系 [J]. 北京航空航天大学学报, 1992, (2): 120
112 Zhong Q P, Zhang Z, Li J, et al. Mathematical simulation and experimental mark of ductile-brittle transition process for materials [J] J. Beijing Univ. Aeronaut. Astronaut., 1993, (2): 16
钟群鹏, 张 峥, 李 洁 等. 材料韧脆转移过程的数学模拟和实验标定 [J]. 北京航空航天大学学报, 1993, (2): 16
113 Zhang Y H, Ma E, Sun J, et al. A unified model for ductile-to-brittle transition in body-centered cubic metals [J]. J. Mater. Sci. Technol., 2022, 141: 193
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[7] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[10] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[11] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[12] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[13] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[14] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[15] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
No Suggested Reading articles found!