|
|
Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review |
HAN Weizhong( ), LU Yan, ZHANG Yuheng |
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review. Acta Metall Sin, 2023, 59(3): 335-348.
|
Abstract Body-centered-cubic (bcc)-structured metals have excellent physical properties, such as high melting points, high strength and excellent creep resistance, radiation tolerance, and good compatibility with liquid metals, which are widely used in high-tech fields, such as nuclear reactors, satellites, aircraft, rockets, and engines. However, their low-temperature brittleness and ductile-to-brittle transition characteristics limit their applications. Therefore, a deep understanding of the ductile-to-brittle transition mechanism is of great significance for regulating the ductile-to-brittle transition behavior of bcc-structured metals. In this review, taking bcc-structured metals as an example, the history of the ductile-to-brittle transition investigations in bcc metals was retrospected, the main research progress on this topic was introduced, the newly developed methods to tune the ductile-to-brittle transition temperature of metals was discussed, and the key points to be focused on in the future was listed.
|
Received: 18 August 2022
|
|
Fund: National Natural Science Foundation of China(51971170);National Natural Science Foundation of China(51922082);Programme of Introducing Talents of Discipline to Universities(BP0618008) |
About author: HAN Weizhong, professor, Tel: (029)82664630, E-mail: wzhanxjtu@mail.xjtu.edu.cn
|
1 |
Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
|
2 |
Finnie I, Mayville R A. Historical aspects in our understanding of the ductile-brittle transition in steels [J]. J. Eng. Mater. Technol., 1990, 112: 56
|
3 |
Gumbsch P, Riedle J, Hartmaier A, et al. Controlling factors for the brittle-to-ductile transition in tungsten single crystals [J]. Science, 1998, 282: 1293
|
4 |
Samuels J, Roberts S G, Hirsch P B. The brittle-to-ductile transition in silicon [J]. Mater. Sci. Eng., 1988, A105-106: 39
|
5 |
Hirsch P B, Roberts S G, Samuels J. The brittle-ductile transition in silicon. II. Interpretation [J]. Proc. Roy. Soc., 1989, 421A: 25
|
6 |
Brede M. The brittle-to-ductile transition in silicon [J]. Acta Metall. Mater., 1993, 41: 211
|
7 |
Serbena F C, Roberts S G. The brittle-to-ductile transition in germanium [J]. Acta Metall. Mater., 1994, 42: 2505
|
8 |
Franco A, Roberts S G, Warren P D. Fracture toughness, surface flaw sizes and flaw densities in Al2O 3 [J]. Acta Mater., 1997, 45: 1009
|
9 |
Ortner S R. The ductile-to-brittle transition in steels controlled by particle cracking [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 752
|
10 |
Sharma T, Kumar N N, Mondal R, et al. Ductile-to-brittle transition in low-alloy steel: A combined experimental and numerical investigation [J]. J. Mater. Eng. Perform., 2019, 28: 4275
|
11 |
Li L, Jia Z W, Zhang Y F, et al. Ductile-brittle transition temperature of a grain-oriented silicon steel and its influencing factors [J]. Heat Treat. Met., 2021, 46(12): 214
|
|
李 莉, 贾志伟, 张一凡 等. 取向硅钢韧脆转变温度及影响因素 [J]. 金属热处理, 2021, 46(12): 214
|
12 |
Joseph T D, Tanaka M, Wilkinson A J, et al. Brittle-ductile transitions in vanadium and iron-chromium [J]. J. Nucl. Mater., 2007, 367-370: 637
|
13 |
Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
|
14 |
Henderson F, Quaass S T, Wain H L. The fabrication of chromium and some dilute chromium-base alloys [J]. J. Inst. Met., 1954, 83: 4400440
|
15 |
Gilbert A, Reid C N, Hahn G T. Observation on the fracture of chromium [J]. J. Inst. Met., 1963, 92: 351
|
16 |
Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
|
17 |
Passmore E M. Correlation of temperature and grain size effects in the ductile-brittle transition of molybdenum [J]. Philos. Mag., 1965, 11A: 441
|
18 |
Cox B L, Wiffen F W. The ductility in bending of molybdenum alloys irradiated between 425 and 1000oC [J]. J. Nucl. Mater., 1979, 85-86: 901
|
19 |
Johnson A A. The ductile-brittle transition in body-centred cubic transition metals [J]. Philos. Mag., 1962, 7A: 177
|
20 |
Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
|
21 |
Tarleton E, Roberts S G. Dislocation dynamic modelling of the brittle-ductile transition in tungsten [J]. Philos. Mag., 2009, 89: 2759
|
22 |
Giannattasio A, Tanaka M, Joseph T D, et al. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials [J]. Phys. Scr., 2007, 2007: 87
|
23 |
Giannattasio A, Roberts S G. Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten [J]. Philos. Mag., 2007, 87: 2589
|
24 |
Giannattasio A, Yao Z, Tarleton E, et al. Brittle-ductile transitions in polycrystalline tungsten [J]. Philos. Mag., 2010, 90: 3947
|
25 |
Rieth M, Hoffmann A. Influence of microstructure and notch fabrication on impact bending properties of tungsten materials [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 679
|
26 |
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
|
27 |
Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
|
28 |
Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
|
29 |
Bonnekoh C, Hoffmann A, Reiser J. The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to -65oC [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 181
|
30 |
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
|
31 |
Bonk S, Hoffmann J, Hoffmann A, et al. Cold rolled tungsten (W) plates and foils: Evolution of the tensile properties and their indication towards deformation mechanisms [J]. Int. J. Refract. Met. Hard Mater., 2018, 70: 124
|
32 |
Bonnekoh C, Jäntsch U, Hoffmann J, et al. The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 146
|
33 |
Geng X, Luo G N, Wang W J, et al. Measurement of ductile-brittle transition temperature of tungsten materials by four-point bending method and its comparison with other methods [J]. Rare Met. Mater. Eng., 2021, 50: 4089
|
|
耿 祥, 罗广南, 王万景 等. 四点弯曲法测量钨材料韧脆转变温度及其与其他测试方法的比较研究 [J]. 稀有金属材料与工程, 2021, 50: 4089
|
34 |
Zhang Y H, Han W Z. Mechanism of brittle-to-ductile transition in tungsten under small-punch testing [J]. Acta Mater., 2021, 220: 117332
|
35 |
Pszonka A. On the ductile-brittle transition of polycrystalline zinc [J]. Scr. Metall., 1974, 8: 81
|
36 |
Booth A S, Roberts S G. The brittle-ductile transition in γ-TiAl single crystals [J]. Acta Mater., 1997, 45: 1045
|
37 |
Ebrahimi F, Hoyle T G. Brittle-to-ductile transition in polycrystalline NiAl [J]. Acta Mater., 1997, 45: 4193
|
38 |
Ebrahimi F, Shrivastava S. Brittle-to-ductile transition in NiAl single crystal [J]. Acta Mater., 1998, 46: 1493
|
39 |
Li L L, Su Y Q, Beyerlein I J, et al. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys [J]. Sci. Adv., 2020, 6: eabb6658
|
40 |
Li L L, Beyerlein I J, Han W Z. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73: 61
|
41 |
Nikolaev Y V, Kolesov V S, Zubarev P V, et al. Molybdenum and tungsten single crystal alloys with abnormally high creep strength for space nuclear power and propulsion systems [A]. Proceedings of 10th Symposium on Space Nuclear Power and Propulsion [C]. Albuquerque: American Institute of Physics Press, 1993: 267
|
42 |
Zee R H, Xiao Z, Chin B A, et al. Processing of single crystals for high temperature applications [J]. J. Mater. Process. Technol., 2001, 113: 75
|
43 |
Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components [J]. J. Nucl. Mater., 1998, 258-263: 308
|
44 |
Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
|
45 |
Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
|
46 |
Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
|
47 |
Sloan E D. Clathrate Hydrates of Natural Gases [M]. 2nd Ed., New York: Marcel Dekker Inc., 1998: 1
|
48 |
Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Mar. Peroleum Geol., 2011, 28: 279
|
49 |
Huang X, Wang P K, Pang S J, et al. Future utilization of gas hydrate resources in polar regions [J]. Mar. Geol. Front., 2017, 33(11): 18
|
|
黄 霞, 王平康, 庞守吉 等. 极地天然气水合物资源利用前景 [J]. 海洋地质前沿, 2017, 33(11): 18
|
50 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29A: 73
|
51 |
Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
|
52 |
Hartmaier A, Gumbsch P. On the activation energy for the brittle/ductile transition [J]. Phys. Stat. Solidi, 1997, 202B: R1
|
53 |
Gu Y F, Harada H, Ro Y. Chromium and chromium-based alloys: Problems and possibilities for high-temperature service [J]. JOM, 2004, 56(9): 28
|
54 |
Garzke W H, Foecke T, Matthias P, et al. A marine forensic analysis of the RMS TITANIC [A]. Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition [C]. Providence: IEEE, 2000
|
55 |
Li W J, Li Q, Wei L. Application of Charpy impact test on metallic materials [J]. Value Eng., 2018, 37(4): 121
|
|
李卫军, 李 庆, 魏 磊. 金属材料夏比冲击试验的应用研究 [J]. 价值工程, 2018, 37(4): 121
|
56 |
Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
|
57 |
Ding H L. Study on the internal friction and magnetic non-destructive testing method of DBTT for metal materials [D]. Hefei: University of Science and Technology of China, 2018
|
|
丁慧丽. 金属材料韧脆转变温度的内耗和磁性无损检测方法研究 [D]. 合肥: 中国科学技术大学, 2018
|
58 |
Taylor G I, Elam C F. The distortion of iron crystals [J]. Proc. Roy. Soc., 1926, 112A: 337
|
59 |
Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals [J]. Int. Mater. Rev., 2013, 58: 296
|
60 |
Cho H, Bronkhorst C A, Mourad H M, et al. Anomalous plasticity of body-centered-cubic crystals with non-Schmid effect [J]. Int. J. Solids Struct., 2018, 139-140: 138
|
61 |
Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
|
62 |
Vitek V. Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
|
63 |
Mrovec M, Gröger R, Bailey A G, et al. Bond-order potential for simulations of extended defects in tungsten [J]. Phys. Rev., 2007, 75B: 104119
|
64 |
Hu X S, Huang M S, Li Z H. Nonplanar core structure of 1/2<111> screw dislocations: An anisotropic Peierls-Nabarro model [J]. Mech. Mater., 2021, 156: 103794
|
65 |
Dezerald L, Rodney D, Clouet E, et al. Plastic anisotropy and dislocation trajectory in BCC metals [J]. Nat. Commun., 2016, 7: 11695
|
66 |
Schoeck G. The Peierls model: Progress and limitations [J]. Mater. Sci. Eng., 2005, A400-401: 7
|
67 |
Monnet G, Terentyev D. Structure and mobility of the 1/2<111>{112} edge dislocation in BCC iron studied by molecular dynamics [J]. Acta Mater., 2009, 57: 1416
|
68 |
Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
|
69 |
Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars [J]. Phys. Rev. Lett., 2009, 103: 105501
|
70 |
Magnusson A W, Baldwin W M. Low temperature brittleness [J]. J. Mech. Phys. Solids, 1957, 5: 172
|
71 |
Yokobori T. Failure and fracture of metals as nucleation processes [J]. J. Phys. Soc. Jpn., 1952, 7: 44
|
72 |
Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅰ [J]. Philos. Mag., 1958, 3A: 1089
|
73 |
Heslop J, Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅱ [J]. Philos. Mag., 1958, 3A: 1128
|
74 |
Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
|
75 |
Hirsch P B, Roberts S G. The brittle-ductile transition in silicon [J]. Philos. Mag., 1991, 64A: 55
|
76 |
Brunner D, Glebovsky V. Analysis of flow-stress measurements of high-purity tungsten single crystals [J]. Mater. Lett., 2000, 44: 144
|
77 |
Németh A A N, Reiser J, Armstrong D E J, et al. The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 9
|
78 |
Solie K E, Carlson O N. Effect of nitrogen on the brittle-ductile transition of chromium [J]. Trans. Metall. Soc. AIME, 1964, 230: 480
|
79 |
Cairns R E, Grant N J. The effects of carbon, nitrogen, oxygen and sulfur on the ductile-brittle fracture temperature of chromium [J]. Trans Metall. Soc. AIME, 1964, 230: 1150
|
80 |
Farrell K, Schaffhauser A C, Stiegler J O. Recrystallization, grain growth and the ductile-brittle transition in tungsten sheet [J]. J. Less-Common Met., 1967, 13: 141
|
81 |
Grujicic M, Zhao H, Krasko G L. Atomistic simulation of 3 (111) grain boundary fracture in tungsten containing various impurities [J]. Int. J. Refract. Met. Hard Mater., 1997, 15: 341
|
82 |
Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
|
83 |
Klopp W D. A review of chromium, molybdenum, and tungsten alloys [J]. J. Less-Common Met., 1975, 42: 261
|
84 |
Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperature [J]. J. Mater. Sci., 1995, 30: 770
|
85 |
Klopp W D, Witzke W R, Raffo P L. Mechanical properties of dilute tungsten-rhenium alloys [R]. Washington: NASA, 1966
|
86 |
Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten [J]. Phys. Rev. Lett., 2010, 104: 195503
|
87 |
Hu Y J, Fellinger M R, Butler B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten [J]. Acta Mater. 2017, 141: 304
|
88 |
Setyawan W, Kurtz R J. Effects of transition metals on the grain boundary cohesion in tungsten [J]. Scr. Mater., 2012, 66: 558
|
89 |
Tsuji N, Okuno S, Koizumi Y, et al. Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process [J]. Mater. Trans., 2004, 45: 2272
|
90 |
Takaki S, Kawasaki K, Kimura Y. Mechanical properties of ultra fine grained steels [J]. J. Mater. Process. Technol., 2001, 117: 359
|
91 |
Hwang B, Kim S J. Grain size dependence of ductile-to-brittle transition temperature of a high-nitrogen Cr-Mn austenitic steel [J]. Mater. Sci. Eng., 2012, A531: 182
|
92 |
Rupp D, Mönig R, Gruber P, et al. Fracture toughness and microstructural characterization of polycrystalline rolled tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 669
|
93 |
Aleksandro I V, Raab G I, Shestakova L O, et al. Refinement of tungsten microstructure by severe plastic deformation [J]. Phys. Met. Metallogr., 2002, 93: 493
|
94 |
Vorhauer A, Pippan R. Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation [J]. Mater. Sci. Forum, 2003, 426-432: 2747
|
95 |
Li P, Wang X, Xue K M, et al. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
|
96 |
Ha K F, Yang C, Bao J S. Effect of dislocation density on the ductile-brittle transition in bulk Fe-3%Si single crystals [J]. Scr. Metall. Mater., 1994, 30: 1065
|
97 |
Zhao M Y, Zhou Z J, Zhong M, et al. Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W-Y2O3 alloy [J]. Mater. Sci. Eng., 2015, A646: 19
|
98 |
Zhang T Q, Wang Y J, Zhou Y, et al. Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites [J]. Mater. Sci. Eng., 2009, A512: 19
|
99 |
Kurishita H, Matsuo S, Arakawa H, et al. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance [J]. J. Nucl. Mater., 2010, 398: 87
|
100 |
Fukuda M, Hasegawa A, Tanno T, et al. Property change of advanced tungsten alloys due to neutron irradiation [J]. J. Nucl. Mater., 2013, 442: S273
|
101 |
Miao S, Xie Z M, Zeng L F, et al. Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process [J]. Nucl. Mater. Energy, 2017, 13: 12
|
102 |
Lang S T, Yan Q Z, Sun N B, et al. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method [J]. Fusion Eng. Des., 2017, 121: 366
|
103 |
Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
|
104 |
Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
|
105 |
Blagoeva D T, Opschoor J, van der Laan J G, et al. Development of tungsten and tungsten alloys for DEMO divertor applications via MIM technology [J]. J. Nucl. Mater., 2013, 442: S198
|
106 |
Ding M S, Du J P, Wan L, et al. Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper [J]. Nano Lett., 2016, 16: 4118
|
107 |
Zheng R Y, Jian W R, Beyerlein I J, et al. Atomic-scale hidden point-defect complexes induce ultrahigh-irradiation hardening in tungsten [J]. Nano Lett., 2021, 21: 5798
|
108 |
Li J T, Beyerlein I J, Han W Z. Helium irradiation-induced ultrahigh hardening in niobium [J]. Acta Mater., 2022, 226: 117656
|
109 |
Yang H, Lozano J G, Pennycook T J, et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning [J]. Nat. Commun., 2015, 6: 7266
|
110 |
Song K P, Liu J K, Lu N, et al. Direct atomic-scale imaging of a screw dislocation core structure in inorganic halide perovskites [J]. Phys. Chem. Chem. Phys., 2022, 24: 6393
|
111 |
Chu F, Zhong Q P. The essence and relation of ductile-brittle evaluate criterions of metals [J]. J. Beijing Univ. Aeronaut. Astronaut., 1992, (2): 120
|
|
初 飞, 钟群鹏. 金属韧脆转移评定标准的本质及其相互关系 [J]. 北京航空航天大学学报, 1992, (2): 120
|
112 |
Zhong Q P, Zhang Z, Li J, et al. Mathematical simulation and experimental mark of ductile-brittle transition process for materials [J] J. Beijing Univ. Aeronaut. Astronaut., 1993, (2): 16
|
|
钟群鹏, 张 峥, 李 洁 等. 材料韧脆转移过程的数学模拟和实验标定 [J]. 北京航空航天大学学报, 1993, (2): 16
|
113 |
Zhang Y H, Ma E, Sun J, et al. A unified model for ductile-to-brittle transition in body-centered cubic metals [J]. J. Mater. Sci. Technol., 2022, 141: 193
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|