|
|
Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy |
TANG Liting, GUO Qianying, LI Chong, DING Ran, LIU Yongchang( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
|
Cite this article:
TANG Liting, GUO Qianying, LI Chong, DING Ran, LIU Yongchang. Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy. Acta Metall Sin, 2025, 61(1): 43-58.
|
Abstract Allvac 718Plus is a newly developed nickel-based superalloy derived from Inconel 718 alloy via composition optimization. Its maximum service temperature is approximately 55 oC higher than that of Inconel 718. With its excellent combination of creep resistance, fatigue resistance, machinability, and weldability, the Allvac 718Plus is highly suitable for manufacturing high-temperature components that can operate at up to 700 oC. As a precipitation-strengthened superalloy that is relatively new with limited application history, understanding the evolution of its secondary phases during heat treatment is crucial for optimizing its properties via microstructure control. In this context, the secondary phases found in Allvac 718Plus are introduced, including the primary strengthening γ′ phase, the main grain-boundary η phase, and the γ″, δ, σ, and C14 Laves phases that form under specific conditions. The precipitation behaviors of the γ′ and η phases during standard heat treatments are examined, along with the effects of presolidification and direct aging treatments. Additionally, the evolution of secondary phases during prolonged thermal exposure are explored. The results demonstrate that the formation of a more stable composite γ″-γ′ structure is a promising strategy to achieve long-term serviceability for the alloy. The influence of the microstructural evolution of secondary phases during high-temperature service on fatigue and creep resistance is also analyzed, focusing on the roles of the two primary secondary phases. Furthermore, this paper highlights the correlation between the sluggish kinetics of γ′ phase precipitation in Allvac 718Plus and its weldability. A comprehensive overview of the harmful effects of the Laves and η phases on cracking during welding and strain-age cracking is also provided.
|
Received: 05 June 2024
|
|
Fund: National Natural Science Foundation of China(52034004);National Key Research and Development Program(2022YFB3705300) |
Corresponding Authors:
LIU Yongchang, professor, Tel: 13512214280, E-mail: ycliu@tju.edu.cn
|
1 |
Du J H, Bi Z N, Qu J L. Recent development of triple melt GH4169 alloy[J]. Acta Metall. Sin., 2023, 59: 1159
doi: 10.11900/0412.1961.2023.00144
|
|
杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59: 1159
doi: 10.11900/0412.1961.2023.00144
|
2 |
Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel based single crystal superalloys[J]. Acta Metall. Sin., 2023, 59: 1109
|
|
张 健, 王 莉, 谢 光 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59: 1109
|
3 |
Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents[J]. Acta Metall. Sin., 2020, 56: 21
doi: 10.11900/0412.1961.2019.00137
|
|
吴 静, 刘永长, 李 冲 等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56: 21
|
4 |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy[J]. Acta Metall. Sin., 2016, 52: 1259
|
|
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展[J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
|
5 |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency[J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
|
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
6 |
Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China[J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
|
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
7 |
Qiao Z, Li C, Zhang H J, et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations[J]. Int. J. Min. Met. Mater., 2020, 27: 1123
doi: 10.1007/s12613-019-1949-8
|
8 |
Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys[J]. J. Mater. Sci. Technol., 2021, 67: 95
|
9 |
Qi Q Q, Zhang H J, Liu C X, et al. On the microstructure evolution during low cycle fatigue deformation of wrought ATI 718Plus alloy[J]. Mater. Sci. Eng., 2020, A798: 140132
|
10 |
Tang L T, Zhang H Y, Guo Q Y, et al. The precipitation of η phase during the solution treatments of Allvac 718Plus[J]. Mater. Charact., 2021, 176: 111142
|
11 |
Li L H, Dong J X, Zhang M C, et al. Integrated simulation of the forging process for GH4738 alloy turbine disk and its application[J]. Acta Metall. Sin., 2014, 50: 821
doi: 10.3724/SP.J.1037.2013.00675
|
|
李林翰, 董建新, 张麦仓 等. GH4738合金涡轮盘锻造过程的集成式模拟及应用[J]. 金属学报, 2014, 50: 821
doi: 10.3724/SP.J.1037.2013.00675
|
12 |
Li J, Wu Y T, Liu Y C, et al. Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase[J]. Mater. Charact., 2020, 169: 110547
|
13 |
Guo Q Y, Ji K K, Zhang T, et al. Precipitates evolution and tensile behavior of wrought Ni-based ATI 718Plus superalloy during long-term thermal exposure[J]. Sci. China Technol. Sci., 2022, 65: 1283
|
14 |
Wang M Q, Deng Q, Du J H, et al. Research progress of alloy ATI 718Plus in China[J]. Rare Met. Mater. Eng., 2016, 45: 3335
|
|
王民庆, 邓 群, 杜金辉 等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45: 3335
|
15 |
Kumar K S, Hazzledine P M. Polytypic transformations in Laves phases[J]. Intermetallics, 2004, 12: 763
|
16 |
Asala G, Khan A K, Andersson J, et al. Microstructural analyses of ATI 718Plus® produced by wire-ARC additive manufacturing process[J]. Metall. Mater. Trans., 2017, 48A: 4211
|
17 |
Chen Y H, Yang C L, Fan C L, et al. The influence of solution temperature on microstructure evolution and mechanical properties of ATI 718Plus repaired by wire and arc additive manufacturing[J]. Mater. Sci. Eng., 2022, A852: 143641
|
18 |
Krakow R, Johnstone D N, Eggeman A S, et al. On the crystallography and composition of topologically close-packed phases in ATI 718Plus® [J]. Acta Mater., 2017, 130: 271
|
19 |
Pickering E J, Mathur H, Bhowmik A, et al. Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater., 2012, 60: 2757
|
20 |
Eurich N C, Bristowe P D. Thermodynamic stability and electronic structure of η-Ni6Nb(Al, Ti) from first principles[J]. Scr. Mater., 2014, 77: 37
|
21 |
Shen Y, Wang M Q, Xia H, et al. Pseudobinary phase diagrams of eutectic reaction for Pt-containing and Pt-free 718Plus alloys[J]. Adv. Eng. Mater., 2021, 23: 2001233
|
22 |
Hosseini S A, Abbasi S M, Madar K Z, et al. The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus[J]. Mater. Chem. Phys., 2018, 211: 302
|
23 |
Srinivasan D, Lawless L U, Ott E A. Experimental determination of TTT diagram for alloy 718Plus®[A]. Superalloys 2012[M]. Seven Springs: TMS, 2012: 759
|
24 |
Wang M Q, Tian C G, Nan Y, et al. A review on 718Plus, the new superalloy: Performance, aerospace application and development trend[J]. Mater. Rev., 2017, 31(19): 72
|
|
王妙全, 田成刚, 南 洋 等. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 材料导报, 2017, 31(19): 72
|
25 |
Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Mater. Sci. Eng., 2016, A677: 515
|
26 |
Hausmann D, Förner A, Pröbstle M, et al. Correlation between local chemical composition and formation of different types of ordered phases in the polycrystalline nickel-base superalloy A718Plus[J]. Adv. Eng. Mater., 2021, 23: 2100558
|
27 |
Asala G, Andersson J, Ojo O A. Precipitation behavior of γ′ precipitates in the fusion zone of TIG welded ATI 718Plus® [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2721
|
28 |
Guo Q Y, Ma Z Q, Qiao Z X, et al. A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy[J]. J. Mater. Sci. Technol., 2022, 119: 98
|
29 |
Tang L T, Guo Q Y, Li C, et al. Precipitation behaviors of the rapidly-solidified Allvac 718Plus superalloy during aging treatment[J]. Mater. Charact., 2023, 200: 112856
|
30 |
Xie X S, Wang G L, Dong J X, et al. Structure stability study on a newly developed nickel-base superalloy-Allvac® 718Plus™[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 179
|
31 |
Wang M Q, Du J H, Deng Q, et al. Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. J. Alloys Compd., 2017, 701: 635
|
32 |
Casanova A, Martín-Piris N, Hardy M, et al. Evolution of secondary phases in alloy ATI 718Plus® during processing[A]. Proceedings of MATEC Web of Conferences[C]. Paris: EDP Sciences, 2014: 09003
|
33 |
Messé O M, Barnard J S, Pickering E J, et al. On the precipitation of delta phase in ALLVAC® 718Plus[J]. Philos. Mag., 2014, 94: 1132
|
34 |
Tang L T, Guo Q Y, Li C, et al. Precipitation sequences in rapidly solidified Allvac 718Plus alloy during solution treatment[J]. J. Mater. Sci. Technol., 2022, 128: 180
doi: 10.1016/j.jmst.2022.03.031
|
35 |
Asala G, Andersson J, Ojo O A. Improved dynamic impact behaviour of wire-arc additive manufactured ATI 718Plus® [J]. Mater. Sci. Eng., 2018, A738: 111
|
36 |
Andersson J, Sjöberg G, Viskari L, et al. Hot cracking of Allvac 718Plus, Alloy 718 and Waspaloy at varestraint testing[A]. Proceedings of the 47th Conference of Metallurgists (COM)[C]. Winnipeg: Springer, 2008: 401
|
37 |
Kruk A, Cempura G. Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy[J]. Int. J. Mater. Res., 2019, 110: 3
|
38 |
Tang L T, Guo Q Y, Li C, et al. Precipitation and tensile behaviors of Allvac 718Plus superalloy during long-term thermal exposure[J]. Mater. Sci. Eng., 2024, A896: 146221
|
39 |
Wang M Q, Deng Q, Du J H, et al. The effect of Aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Trans., 2015, 56: 635
|
40 |
Kumari G, Boehlert C, Sankaran S, et al. The effects of solutionizing temperature on the microstructure of Allvac 718Plus[J]. J. Mater. Eng. Perform., 2020, 29: 3523
doi: 10.1007/s11665-020-04687-z
|
41 |
Wang M Q, Deng Q, Du J H, et al. The influence of Δ phase on mechanical properties of ATI 718Plus alloy[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. Pittsburgh: TMS, 2014: 769
|
42 |
Lech S, Wusatowska-Sarnek A M, Wieczerzak K, et al. Evolution of microstructure and mechanical properties of ATI 718Plus® superalloy after graded solution treatment[J]. Metall. Mater. Trans., 2023, 54: 2011
|
43 |
Whitmore L, Ahmadi M R, Guetaz L, et al. The microstructure of heat-treated nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, A610: 39
|
44 |
Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus[J]. Mater. Sci. Eng., 2021, A812: 141113
|
45 |
Whitmore L, Ahmadi M R, Stockinger M, et al. Microstructural investigation of thermally aged nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, A594: 253
|
46 |
Whitmore L, Leitner H, Povoden-Karadeniz E, et al. Transmission electron microscopy of single and double aged 718Plus superalloy[J]. Mater. Sci. Eng., 2012, A534: 413
|
47 |
Cao W D, Kennedy R L. Application of direct aging to Allvac® 718Plus™ alloy for improved performance[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 213
|
48 |
Lech S, Kruk A, Cempura G, et al. Influence of high-temperature exposure on the microstructure of ATI 718Plus superalloy studied by electron microscopy and tomography techniques[J]. J. Mater. Eng. Perform., 2020, 29: 1453
|
49 |
Hörnqvist M, Viskari L. Reduced dwell-fatigue resistance in a Ni-base superalloy after short-term thermal exposure[J]. Metall. Mater. Trans., 2014, 45A: 2699
|
50 |
Pröbstle M, Neumeier S, Hünert D, et al. Tensile and creep strength of thermally exposed allvac 718Plus[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. Pittsburgh: TMS, 2014: 349
|
51 |
Kearsey R M, Tsang J, Oppenheimer S, et al. Microstructural effects on the mechanical properties of ATI 718Plus® alloy[J]. JOM, 2012, 64: 241
|
52 |
Tsang J, Kearsey R M, Au P, et al. Effect of composition and microstructure on the fatigue and creep-fatigue behaviour of Allvac 718Plus alloy[J]. Mater. High Temp., 2010, 27: 79
|
53 |
Liu X B, Xu J, Barbero E, et al. Effect of thermal treatment on the fatigue crack propagation behavior of a new Ni-base superalloy[J]. Mater. Sci. Eng., 2008, A474: 30
|
54 |
Cao W D. Thermal stability characterization of Ni-base ATI 718Plus® superalloy[A]. Superalloys 2008[M]. Pittsburgh: TMS, 2008: 789
|
55 |
Dash B B, Dixit S, Boehlert C J, et al. Influence of interrupted ageing on the temporal evolution of the γ′ size distribution and the co-precipitation of γ″ in alloy 718Plus[J]. Mater. Charact., 2023, 206: 113394
|
56 |
Guo J T. The effect of aluminium and titanium on the microstructure and mechanical properties of an iron-base alloy[J]. Acta. Metall. Sin., 1978, 14: 227
|
|
郭建亭. 铝和钛对一种35镍15铬型铁基高温合金组织结构和力学性能的影响[J]. 金属学报, 1978, 14: 227
|
57 |
Viskari L, Cao Y, Norell M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2011, A528: 2570
|
58 |
Wang M, Du J, Deng Q, et al. The effect of grain size on the dwell fatigue crack growth rate of alloy ATI 718Plus®[A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. Cham: Springer, 2018: 817
|
59 |
Kirchmayer A, Pröbstle M, Huenert D, et al. Influence of grain size and volume fraction of η/δ precipitates on the dwell fatigue crack propagation rate and creep resistance of the nickel-base superalloy ATI 718Plus[J]. Metall. Mater. Trans., 2023, 54A: 2219
|
60 |
Liu X B, Xu J, Deem N, et al. Effect of thermal-mechanical treatment on the fatigue crack propagation behavior of newly developed Allvac® 718PlusTM alloy[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 233
|
61 |
Tsang J, Kearsey R M, Au P, et al. Microstructural study of fatigue and dwell fatigue crack growth behaviour of ATI 718Plus alloy[J]. Can. Metall. Q., 2011, 50: 222
|
62 |
Kattoura M, Mannava S R, Qian D, et al. Effect of ultrasonic nanocrystal surface modification on elevated temperature residual stress, microstructure, and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2018, 110: 186
|
63 |
Kattoura M, Telang A, Mannava S R, et al. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Mater. Sci. Eng., 2018, A711: 364
|
64 |
Kattoura M, Mannava S R, Qian D, et al. Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2017, 104: 366
|
65 |
Kattoura M, Mannava S R, Qian D, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2017, 102: 121
|
66 |
Zrník J, Strunz P, Horňák P, et al. Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS[J]. Appl. Phys., 2002, 74A: s1155
|
67 |
Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2018, A738: 308
|
68 |
Hayes R W, Unocic R R, Nasrollahzadeh M. Creep deformation of Allvac 718Plus[J]. Metall. Mater. Trans., 2015, 46A: 218
|
69 |
Barba D, Pedrazzini S, Vilalta-Clemente A, et al. On the composition of microtwins in a single crystal nickel-based superalloy[J]. Scr. Mater., 2017, 127: 37
|
70 |
Unocic R R, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a gamma' precipitate strengthened Ni-based superalloy[J]. Acta Mater., 2011, 59: 7325
|
71 |
Alabbad B, Tin S. Effect of grain boundary misorientation on η phase precipitation in Ni-base superalloy 718Plus[J]. Mater. Charact., 2019, 151: 53
doi: 10.1016/j.matchar.2019.02.038
|
72 |
Hassan B, Corney J. Grain boundary precipitation in Inconel 718 and ATI 718Plus[J]. Mater. Sci. Technol., 2017, 33: 1879
|
73 |
Unocic K A, Hayes R W, Mills M J, et al. Microstructural features leading to enhanced resistance to grain boundary creep cracking in Allvac 718Plus[J]. Metall. Mater. Trans., 2010, 41A: 409
|
74 |
Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants[J]. Scr. Mater., 2019, 164: 66
|
75 |
Huang C A, Wang T H, Lee C H, et al. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW)[J]. Mater. Sci. Eng., 2005, A398: 275
|
76 |
Asala G, Ojo O A. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus[J]. Results Phys., 2016, 6: 196
|
77 |
Andersson J, Sjöberg G P. Repair welding of wrought superalloys: Alloy 718, Allvac 718Plus and Waspaloy[J]. Sci. Technol. Weld. Joining, 2012, 17: 49
|
78 |
Devendranath Ramkumar K, Sridhar R, Periwal S, et al. Investigations on the structure-property relationships of electron beam welded Inconel 625 and UNS 32205[J]. Mater. Des., 2015, 68: 158
|
79 |
Koleva E G, Mladenov G M, Trushnikov D N, et al. Signal emitted from plasma during electron-beam welding with deflection oscillations of the beam[J]. J. Mater. Process. Technol., 2014, 214: 1812
|
80 |
Vishwakarma K R, Richards N L, Chaturvedi M C. Microstructural analysis of fusion and heat affected zones in electron beam welded Allvac® 718PlusTM superalloy[J]. Mater. Sci. Eng., 2008, A480: 517
|
81 |
Idowu O A. Heat affected zone cracking of Allvac 718Plus superalloy during high power beam welding and post-weld heat treatment[D]. Winnipeg: The University of Manitoba, 2010
|
82 |
Singh S, Fransson W, Andersson J, et al. Varestraint weldability testing of ATI 718Plus®-influence of eta phase[A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. New York: Springer, 2018: 929
|
83 |
Mei Y P, Liu Y C, Liu C X, et al. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J]. Mater. Des., 2016, 89: 964
|
84 |
Singh S, Andersson J. Varestraint weldability testing of cast ATI® 718Plus™: A comparison to cast alloy 718[J]. Weld World, 2019, 63: 389
|
85 |
Hanning F, Khan A K, Andersson J, et al. Advanced microstructural characterisation of cast ATI 718Plus®-effect of homogenisation heat treatments on secondary phases and repair welding behaviour[J]. Weld World, 2020, 64: 523
doi: 10.1007/s40194-020-00851-0
|
86 |
Hanning F, Andersson J. The influence of base metal microstructure on weld cracking in manually GTA repair welded cast ATI 718Plus® [A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. Cham: Springer, 2018: 917
|
87 |
Andersson J, Sjöberg G, Larsson J. Investigation of homogenization and its influence on the repair welding of cast Allvac 718Plus(®)[A]. Superalloy 718 and Derivatives[M]. Pittsburgh: TMS, 2010: 439
|
88 |
Andersson J, Sjöberg G, Hänninen H. Metallurgical response of electron beam welded Allvac® 718Plus™[A]. Hot Cracking Phenomena in Welds III[M]. Berlin, Heidelberg: Springer, 2011: 415
|
89 |
Idowu O A, Ojo O A, Chaturvedi M C. Crack-free electron beam welding of Allvac 718Plus®superalloy[J]. Weld. J., 2009, 88: 179S
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|