Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 464-472    DOI: 10.11900/0412.1961.2022.00094
Research paper Current Issue | Archive | Adv Search |
Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control
YU Hua, LI Xin, JIANG He(), YAO Zhihao, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

YU Hua, LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control. Acta Metall Sin, 2024, 60(4): 464-472.

Download:  HTML  PDF(2854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH3536 alloy is a solid solution-strengthened superalloy for aero-engines. In general, this alloy is cold rolled into thin strips and used in honeycomb structures in engine sealing systems. During cold deformation of GH3536 alloy, a microstructural damage caused by carbide particles is the focus of attention. Therefore, understanding the influence of carbides on the cold deformation damage of GH3536 alloy is necessary to control such a phenomenon. Carbide cracking and local cracking of the matrix was observed through cold rolling deformation of thin strips and compression deformation of cylindrical specimens. Combined with finite element simulation results, the effect of carbide morphology and distribution characteristics on the microstructural damage was further discussed. Results show that when carbides are larger in size, irregular in shape, and distributed in agglomeration, the internal stress and fracture tendency are larger, which is contrary to small circular carbides. The agglomeration and banded distribution of carbides primarily increase matrix stress and cracking tendency. The heat treatment results show that the agglomeration and banded distribution characteristics of small carbides can be significantly improved by increasing the solution/annealing heat treatment temperature above 1150oC, but the effect is not evident for large carbides above 10 μm.

Key words:  GH3536 alloy      cold deformation      heat treatment      carbide fracture     
Received:  07 March 2022     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(92160201)
Corresponding Authors:  JIANG He, associate professor, Tel: 13811910685, E-mail: jianghe@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00094     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/464

Fig.1  Carbide characteristics of GH3536 alloy obtained by SEM and the finite element model
Fig.2  SEM images of carbides of forged GH3536 alloy (white: M6C, dark gray: M23C6)
(a) morphology of carbides (1180oC, 30 min solid solution heat treatment)
(b) grain boundary carbides (1110oC, 30 min solid solution heat treatment)
Fig.3  Carbide fracture in GH3536 alloy strip 0.078 mm thick with 50% cold rolling deformation (RD—rolling direction) (a, b, d) longitudinal section (c) rolling section
Fig.4  Carbide fracture of GH3536 alloy (1180oC, 30 min solid solution heat treatment) with 55.6% compression deformation at room temperature (a, b)
Fig.5  Maximum principal stress distributions of circular carbides with diameter of 7.1 μm (a) and 14.5 μm (b), and irregular carbides with the angle between the long axis and the deformation direction of 90° (c) and 0° (d) in GH3536 alloy with 30% deformation
Fig.6  Maximum principal stress distribution of banded carbides in GH3536 alloy with 30% deformation
Fig.7  Stress and strain distributions of matrix around carbides of GH3536 alloy with 30% deformation (PEEQ—equivalent plastic strain)
(a) carbide banded distribution (b) carbide scattered distribution
Fig.8  Change of carbide with heat treatment temperature in GH3536 alloy
(a) 1000oC (b) 1110oC (c) 1150oC (d) 1210oC
Fig.9  Change curve of area fraction of carbide with heat treatment temperature in GH3536 alloy
Fig.10  Changes of minimum circumscribed rectangle size of GH3536 alloy carbide with heat treatment temperature
(a) 1110oC (b) 1150oC (c) 1210oC
1 Academic Committee of the Superalloys. China Superalloys Handbook: Scroll, Deformed Superalloys, Superalloy Wires for Welding[M]. Beijing: China Quality Inspection Press, Standards Press of China, 2012: 160
中国金属学会高温材料分会. 中国高温合金手册: 上卷: 变形高温合金 焊接用高温合金丝[M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 160
2 Kirchhöfer H, Schubert F, Nickel H. Precipitation behavior of Ni-Cr-22 Fe-18 Mo (Hastelloy-X) and Ni-Cr-22 Co-12 Mo (Inconel-617) after isothermal aging[J]. Nucl. Technol., 1984, 66: 139
doi: 10.13182/NT84-A33462
3 Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X[J]. Mater. Sci. Eng., 2000, A293: 112
4 Kutz M. Mechanical Engineers' Handbook: Materials and Mechanical Design[M]. 3rd Ed., Hoboken: John Wiley & Sons, Inc., 2006: 1161
5 Evans N D, Maziasz P J, Shingledecker J P, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750oC[J]. Mater. Sci. Eng., 2008, A498: 412
6 Baldan A. Combined effects of thin-section size, grain size and cavities on the high temperature creep fracture properties of a nickel-base superalloy[J]. J. Mater. Sci., 1997, 32: 35
doi: 10.1023/A:1018506628065
7 Baldan A. On the thin-section size dependent creep strength of a single crystal nickel-base superalloy[J]. J. Mater. Sci., 1995, 30: 6288
doi: 10.1007/BF00369679
8 Wilson D J. Relationship of mechanical characteristics and microstructural features to the time-dependent edge notch sensitivity of Inconel 718 sheet[R]. 1971: NASA Report NASA-CR-138772
9 Chen W, Chaturvedi M C. The influence of grain boundary precipitates on creep fracture of Inconel 718[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1994: 567
10 Sundararaman M, Mukhopadhyay P, Banerjee S. Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1997: 367
11 Evans N D, Maziasz P J, Shingledecker J P. Creep-testing foils and sheets of alloy 625 for microturbine recuperators[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 2005: 721
12 Jagadeesh G V, Setti S G. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J]. J. Mater. Sci., 2020, 55: 9848
doi: 10.1007/s10853-020-04715-2
13 Ma S M, Zhuang X C, Wang X M. Particle distribution-dependent micromechanical simulation on mechanical properties and damage behaviors of particle reinforced metal matrix composites[J]. J. Mater. Sci., 2021, 56: 6780
doi: 10.1007/s10853-020-05684-2
14 Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Mater., 1996, 44: 3801
doi: 10.1016/1359-6454(96)00008-0
15 Qing H. The influence of particle shapes on strength and damage properties of metal matrix composites[J]. J. Nanosci. Nanotechnol., 2015, 15: 5741
pmid: 26369147
16 Mishnaevsky Jr L, Derrien K, Baptiste D. Effect of microstructure of particle reinforced composites on the damage evolution: Probabilistic and numerical analysis[J]. Compos. Sci. Technol., 2004, 64: 1805
doi: 10.1016/j.compscitech.2004.01.013
17 Dastgerdi J N, Marquis G, Anbarlooie B, et al. Microstructure-sensitive investigation on the plastic deformation and damage initiation of amorphous particles reinforced composites[J]. Compos. Struct., 2016, 142: 130
doi: 10.1016/j.compstruct.2016.01.075
18 Bergsmo A, Dunne F P E. Competing mechanisms of particle fracture, decohesion and slip-driven fatigue crack nucleation in a PM nickel superalloy[J]. Int. J. Fatigue, 2020, 135: 105573
doi: 10.1016/j.ijfatigue.2020.105573
19 Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. 4th Ed., Boca Raton: CRC Press, 2017: 229
20 Mishnaevsky Jr L, Lippmann N, Schmauder S. Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials[J]. Int. J. Fract., 2003, 120: 581
doi: 10.1023/A:1025524214322
21 Schöllmann M, Richard H A, Kullmer G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures[J]. Int. J. Fract., 2002, 117: 129
doi: 10.1023/A:1020980311611
22 Richard H A, Kuna M. Theoretical and experimental study of superimposed fracture modes I, II and III[J]. Eng. Fract. Mech., 1990, 35: 949
doi: 10.1016/0013-7944(90)90124-Y
23 Onaka S, Kato M. Effects of elastic modulus, shape and volume fraction of an elastically inhomogeneous second phase on stress states in a loaded composite[J]. Mater. Trans., JIM, 1999, 40: 1102
24 Davis J R. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys[M]. ASM International, 2000: 53
25 Yu Q B, Liu X H, Zhao X P. Microstructural Morphology and Analysis of TMCP Steels[M]. Beijing: Science Press, 2010: 256
于庆波, 刘相华, 赵贤平. 控轧控冷钢的显微组织形貌及分析[M]. 北京: 科学出版社, 2010: 256
26 Meyer L, translated by Zhao H. Optimierung der Werkstoffeigenschaften bei der Herstellung von Warmband und Kaltband aus Stahl[M]. Beijing: Metallurgical Industry Press, 1996: 89
鲁茨·迈耶著, 赵 辉 译. 带钢轧制过程中材料性能的优化[M]. 北京: 冶金工业出版社, 1996: 89
[1] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[9] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[10] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[11] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[13] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[14] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[15] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
No Suggested Reading articles found!