|
|
Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control |
YU Hua, LI Xin, JIANG He( ), YAO Zhihao, DONG Jianxin |
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
YU Hua, LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control. Acta Metall Sin, 2024, 60(4): 464-472.
|
Abstract GH3536 alloy is a solid solution-strengthened superalloy for aero-engines. In general, this alloy is cold rolled into thin strips and used in honeycomb structures in engine sealing systems. During cold deformation of GH3536 alloy, a microstructural damage caused by carbide particles is the focus of attention. Therefore, understanding the influence of carbides on the cold deformation damage of GH3536 alloy is necessary to control such a phenomenon. Carbide cracking and local cracking of the matrix was observed through cold rolling deformation of thin strips and compression deformation of cylindrical specimens. Combined with finite element simulation results, the effect of carbide morphology and distribution characteristics on the microstructural damage was further discussed. Results show that when carbides are larger in size, irregular in shape, and distributed in agglomeration, the internal stress and fracture tendency are larger, which is contrary to small circular carbides. The agglomeration and banded distribution of carbides primarily increase matrix stress and cracking tendency. The heat treatment results show that the agglomeration and banded distribution characteristics of small carbides can be significantly improved by increasing the solution/annealing heat treatment temperature above 1150oC, but the effect is not evident for large carbides above 10 μm.
|
Received: 07 March 2022
|
|
Fund: National Natural Science Foundation of China(92160201) |
Corresponding Authors:
JIANG He, associate professor, Tel: 13811910685, E-mail: jianghe@ustb.edu.cn
|
1 |
Academic Committee of the Superalloys. China Superalloys Handbook: Scroll, Deformed Superalloys, Superalloy Wires for Welding[M]. Beijing: China Quality Inspection Press, Standards Press of China, 2012: 160
|
|
中国金属学会高温材料分会. 中国高温合金手册: 上卷: 变形高温合金 焊接用高温合金丝[M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 160
|
2 |
Kirchhöfer H, Schubert F, Nickel H. Precipitation behavior of Ni-Cr-22 Fe-18 Mo (Hastelloy-X) and Ni-Cr-22 Co-12 Mo (Inconel-617) after isothermal aging[J]. Nucl. Technol., 1984, 66: 139
doi: 10.13182/NT84-A33462
|
3 |
Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X[J]. Mater. Sci. Eng., 2000, A293: 112
|
4 |
Kutz M. Mechanical Engineers' Handbook: Materials and Mechanical Design[M]. 3rd Ed., Hoboken: John Wiley & Sons, Inc., 2006: 1161
|
5 |
Evans N D, Maziasz P J, Shingledecker J P, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750oC[J]. Mater. Sci. Eng., 2008, A498: 412
|
6 |
Baldan A. Combined effects of thin-section size, grain size and cavities on the high temperature creep fracture properties of a nickel-base superalloy[J]. J. Mater. Sci., 1997, 32: 35
doi: 10.1023/A:1018506628065
|
7 |
Baldan A. On the thin-section size dependent creep strength of a single crystal nickel-base superalloy[J]. J. Mater. Sci., 1995, 30: 6288
doi: 10.1007/BF00369679
|
8 |
Wilson D J. Relationship of mechanical characteristics and microstructural features to the time-dependent edge notch sensitivity of Inconel 718 sheet[R]. 1971: NASA Report NASA-CR-138772
|
9 |
Chen W, Chaturvedi M C. The influence of grain boundary precipitates on creep fracture of Inconel 718[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1994: 567
|
10 |
Sundararaman M, Mukhopadhyay P, Banerjee S. Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1997: 367
|
11 |
Evans N D, Maziasz P J, Shingledecker J P. Creep-testing foils and sheets of alloy 625 for microturbine recuperators[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 2005: 721
|
12 |
Jagadeesh G V, Setti S G. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J]. J. Mater. Sci., 2020, 55: 9848
doi: 10.1007/s10853-020-04715-2
|
13 |
Ma S M, Zhuang X C, Wang X M. Particle distribution-dependent micromechanical simulation on mechanical properties and damage behaviors of particle reinforced metal matrix composites[J]. J. Mater. Sci., 2021, 56: 6780
doi: 10.1007/s10853-020-05684-2
|
14 |
Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Mater., 1996, 44: 3801
doi: 10.1016/1359-6454(96)00008-0
|
15 |
Qing H. The influence of particle shapes on strength and damage properties of metal matrix composites[J]. J. Nanosci. Nanotechnol., 2015, 15: 5741
pmid: 26369147
|
16 |
Mishnaevsky Jr L, Derrien K, Baptiste D. Effect of microstructure of particle reinforced composites on the damage evolution: Probabilistic and numerical analysis[J]. Compos. Sci. Technol., 2004, 64: 1805
doi: 10.1016/j.compscitech.2004.01.013
|
17 |
Dastgerdi J N, Marquis G, Anbarlooie B, et al. Microstructure-sensitive investigation on the plastic deformation and damage initiation of amorphous particles reinforced composites[J]. Compos. Struct., 2016, 142: 130
doi: 10.1016/j.compstruct.2016.01.075
|
18 |
Bergsmo A, Dunne F P E. Competing mechanisms of particle fracture, decohesion and slip-driven fatigue crack nucleation in a PM nickel superalloy[J]. Int. J. Fatigue, 2020, 135: 105573
doi: 10.1016/j.ijfatigue.2020.105573
|
19 |
Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. 4th Ed., Boca Raton: CRC Press, 2017: 229
|
20 |
Mishnaevsky Jr L, Lippmann N, Schmauder S. Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials[J]. Int. J. Fract., 2003, 120: 581
doi: 10.1023/A:1025524214322
|
21 |
Schöllmann M, Richard H A, Kullmer G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures[J]. Int. J. Fract., 2002, 117: 129
doi: 10.1023/A:1020980311611
|
22 |
Richard H A, Kuna M. Theoretical and experimental study of superimposed fracture modes I, II and III[J]. Eng. Fract. Mech., 1990, 35: 949
doi: 10.1016/0013-7944(90)90124-Y
|
23 |
Onaka S, Kato M. Effects of elastic modulus, shape and volume fraction of an elastically inhomogeneous second phase on stress states in a loaded composite[J]. Mater. Trans., JIM, 1999, 40: 1102
|
24 |
Davis J R. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys[M]. ASM International, 2000: 53
|
25 |
Yu Q B, Liu X H, Zhao X P. Microstructural Morphology and Analysis of TMCP Steels[M]. Beijing: Science Press, 2010: 256
|
|
于庆波, 刘相华, 赵贤平. 控轧控冷钢的显微组织形貌及分析[M]. 北京: 科学出版社, 2010: 256
|
26 |
Meyer L, translated by Zhao H. Optimierung der Werkstoffeigenschaften bei der Herstellung von Warmband und Kaltband aus Stahl[M]. Beijing: Metallurgical Industry Press, 1996: 89
|
|
鲁茨·迈耶著, 赵 辉 译. 带钢轧制过程中材料性能的优化[M]. 北京: 冶金工业出版社, 1996: 89
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|