Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 59-76    DOI: 10.11900/0412.1961.2024.00146
Overview Current Issue | Archive | Adv Search |
Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings
XIA Xingchuan1(), ZHANG Enkuan1, DING Jian1, WANG Yujiang2, LIU Yongchang3
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
Cite this article: 

XIA Xingchuan, ZHANG Enkuan, DING Jian, WANG Yujiang, LIU Yongchang. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings. Acta Metall Sin, 2025, 61(1): 59-76.

Download:  HTML  PDF(4162KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Refractory high-entropy alloys (RHEAs) have emerged as an innovative and promising class of high-entropy alloys that are primarily composed of multiple refractory elements, such as Ta, Nb, Mo, W, and Hf. These elements confer to the RHEAs with exceptional mechanical properties at high temperature, including excellent strength and stability. In addition to their desirable high-temperature performance, RHEAs also exhibit remarkable resistance to oxidation, wear, corrosion, and radiation. These resistance characteristics grant them potential as application materials in extreme environments, such as aerospace, nuclear reactors, and high-performance industrial machinery. As application materials, RHEAs have attracted evergrowing attention as the candidate materials to replace the traditional nickel-based superalloys due to their single solid solution phases and excellent stability in terms of structure and performance. Although they are promising, RHEAs fabricated using traditional methods, such as casting and powder metallurgy, present several shortcomings that limit their widespread application. It is often difficult to achieve a uniform composition in RHEAs that are prepared by conventional arc melting, which results in significant elemental segregation. Additionally, the size of the ingots prepared by this way is restricted to a small, button-like scale due to the limitations of the casting molds. These drawbacks significantly restrict the development, customization, and application of RHEAs in various industries, underscoring the need for advanced manufacturing techniques that can overcome these restrictions. Laser additive manufacturing (LAM) has emerged as a transformative approach to addressing the abovementioned challenges. By utilizing a high-energy density laser beam as a heat source, LAM enables a “discrete-stacking” or layer-by-layer forming process that can be precisely controlled through computer-aided design. This process offers exceptional flexibility in the manufacture of complex shapes, the fine-tuning of alloy composition, and the achievement of a uniform microstructure, thereby minimizing problems such as elemental segregation. Additionally, laser cladding (LC), which is a subset of LAM, provides the ability to deposit coatings that demonstrate superior mechanical and chemical properties to the surface of substrates, which further expands the application potential of RHEAs. This study presents a comprehensive review of current research on the LC of RHEAs while focusing on the unique microstructures and properties of RHEA coatings (RHEACs). It delves into the influences of alloy composition and processing parameters on the phase composition, microstructure, microhardness, as well as abrasion, oxidation, and corrosion resistances of RHEACs. Furthermore, this review discusses the evolution of RHEAC microstructure during the LC process and how it affects the performance of the coatings. Lastly, this review summarizes the current state of research on LC-RHEAs and outlines future development trends. It also highlights key challenges such as optimizing processing parameters, improving coating-substrate bonding, and tailoring microstructures for enhanced performance to guide future research studies and industrial applications.

Key words:  refractory high-entropy alloy      laser cladding      microstructure      performance     
Received:  08 May 2024     
ZTFLH:  TG146.4  
Fund: Special Project of Local Science and Technology Development Guided by the Central Government of China(236Z1007G);National Natural Science Foundation of China(52175312)
Corresponding Authors:  XIA Xingchuan, professor, Tel: (022)60202011, E-mail: xc_xia@hebut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00146     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/59

Fig.1  Schematics of metal powder preparation method (a, c) and SEM images (b, d) of alloy powder (a, b) plasma atomization[27,29] (c, d) spray granulation[30,31]
Fig.2  SEM images of cross-section and enlarged images of MoNbTaW refractory high entropy alloy coatings (RHEACs) prepared by laser cladding (LC) without (a1-d1) and with (a2-d2) magnetic field[35]
Fig.3  SEM images of MoFe x CrTiWAlNb y RHEACs[41] (Insets show the overall morphologies of coatings)
(a) Fe1Nb1 (b) Fe1.5Nb1 (c) Fe2Nb1
(d) Fe1Nb1.5 (e) Fe1.5Nb1.5 (f) Fe2Nb1.5
(g) Fe1Nb2 (h) Fe1.5Nb2 (i) Fe2Nb2
CoatingSubstratePhaseRef.
TiMoWNbZr45 steelbcc + Ti x W1 -x[46]
CrTiMoWNb x Fe y AlM2 steelbcc + Fe2Nb + (Nb, Ti)C*+ W[41,47,48]
(TiZrNb)14SnMoTC4 alloybcc[49]
TiTaZrZrbcc[50]
TiNbTaZrZrbcc[50]
FeCrAlTiMoWNb3M2 steelbcc + Fe2M + (Nb, Ti)C*[51]
NiTiCrNbTa xTC4 alloybcc + Cr2Nb + NiTi2 + B2[52]
AlNbTaZr xTC4 alloybcc + hcp*[53]
AlTiVMoNbTC4 alloybcc[54]
MoNbTaWIN-718bcc + Laves + fcc_(Ni, M)*[36]
AlMoNbTaCu xTC4 alloybcc + hcp_Ti(Al, Cu)2* + fcc_AlCu2Ti* + TiN*[42]
Al0.2CrTiVNbTC4 alloybcc[55]
AlCoCrMoV xSS 904Lbcc + sigma[56]
TiMoNbZrSS 316bcc[57]
TiMoNbTaWTC4 alloybcc#1 + bcc#2[58]
Si3N4 + TiMoNbTaWTC4 alloybcc + (Nb, Ti)5Si3 + TiN[59]
TiMoNbZrTC4 alloybcc + hcp + Mo[38]
TiNiMoNbTaGTD-111bcc + fcc + MC[37]
TiNbTaZrSS 316bcc#1 + bcc#2 + Fe2Nb*[60]
Y2O3 + MoNbTaWIN-718bcc#1 + bcc#2 + fcc_(Fe, Ni)*[61]
MoNbTaWMobcc + fcc + WC[31]
AlTiNbZrTC4 alloybcc + AlTi3 + AlNb3[62]
TiVNbTaTC4 alloybcc#1 + bcc#2[63]
TiVNbTaCrTC4 alloybcc#1 + bcc#2 + Laves
TiVNbTaZrTC4 alloybcc
TiVNbTaWTC4 alloybcc#1 + bcc#2 + bcc#3
Table 1  Substrate types and phase structures of LC-RHEACs[31,36-38,41,42,46-63]
Fig.4  EBSD images of MoNbTa alloy prepared by laser metal deposition (a) and vacuum arc melting (b)[68]
Fig.5  Schematic of laser cladding molten pool (a) and relationship between temperature gradient G, solidification rate R, and solidification grain size and morphology (b)[60] (θs—solidification angle, vd—laser scanning velocity)
Fig.6  SEM images of cross-sectional morphologies of LC, high-speed laser cladding (HLC), and extreme high-speed laser cladding (EHLC) TiNbZrTa RHEACs at different positions (a-i)[60]
SystemTreatmentHardnessRef.
TiMoWNbZrAs-cladded700 HV0.5[46]
Annealing1300, 1000, 1050 HV0.5 (800, 1000, 1200 oC for 20 h)
CrTiMoWNbFeAlAs-cladded1050 HV0.2[47]
CrTiMoWNb x Fe1.5AlAs-cladded810, 851, 873, 910 HV0.2 (x = 1.5, 2.0, 2.5, 3.0)[48]
CrTiMoWNb1Fe1.5AlAs-cladded913.5 HV0.2[41]
Annealing923, 954, 822.3 HV0.2 (600, 650, and 800 oC for 4 h)
(TiZrNb)14SnMoAs-cladded551.4 HV0.2[49]
TiTaZrAs-cladded(510 ± 22) HV[50]
TiNbTaZrAs-cladded(550 ± 26) HV[50]
FeCrAlTiMoWNb3As-cladded694 HV0.2[51]
Annealing635, 512, 432 HV0.2 (750, 850, and 950 oC for 4 h)
Annealing432, 494, 639, 614 HV0.2 (950 oC for 4, 6, 8, and 10 h)
NiTiCrNbTa xAs-cladded922.8, 985.1, 851.3, 825.4 HV0.3 (x = 0.1, 0.3, 0.5, 1.0)[52]
AlNbTaZr xAs-cladded594, 596, 611, 624, 654 HV0.5 (x = 0.2, 0.4, 0.6, 0.8, 1.0)[53]
AlTiVMoNbAs-cladded888.5 HV0.2[54]
MoNbTaWAs-cladded753, 980 HV0.5 (with and without ultrasound vibrations)[36]
AlMoNbTaCu xAs-cladded~836, ~568, ~519, ~430 HV0.2 (x = 0, 0.4, 0.6, 0.8)[42]
Al0.2CrTiVNbAs-cladded477, 405 HV0.2 (with dilutions of 3.1% and 31.9%)[55]
AlCoCrMoV xAs-cladded867.7, 832.5, 890.4, 910.9, 925.8, 942.6 HV0.1 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0)[56]
TiMoNbZrAs-cladded410 HV0.1[57]
TiMoNbTaWAs-cladded600 HV[58]
Si3N4 + TiMoNbTaWAs-cladded502.52, 537.34, 628.07 HV0.1 (correspondent to Si3N4 mass fractions of 1.0%, 1.5%, and 2.0%)[59]
TiMoNbZrAs-cladded521.79 HV[38]
TiNiMoNbTaAs-cladded~1000, ~650 HV0.2 (with and without ultrasound vibrations)[37]
TiNbTaZrAs-cladded577.5, 487.8, 545.2 HV0.3 (LC, HLC, EHLC)[60]
Y2O3 + MoNbTaWAs-cladded

1007.5, 1163.9, 1218.5, 1274.6 HV0.3 (correspondent to Y2O3 mass fractions

of 0%, 1%, 2%, and 3%)

[61]
MoNbTaWAs-cladded351, 488, 604, 655 HV0.1 (C1, C2, C3, C3-R*)[31]
TiZrAlNbAs-cladded~530 HV[62]
TiVNbTaAs-cladded372.8 HV0.2[63]
TiVNbTaCrAs-cladded532.4 HV0.2[63]
TiVNbTaZrAs-cladded455.2 HV0.2[63]
TiVNbTaWAs-cladded546.3 HV0.2[63]
Table 2  Microhardnesses of LC-RHEACs[31,36-38,41,42,46-63]
CoatingCounterpartWear timeLoadTemperatureWear lossWear rateRef.
minNoCmm3·N·m-1
CrTiMoWNbFeAlGCr1515500.0787 mm3[47]
CrTiMoWNb3Fe1.5AlGCr1515500.045 mm3[47]
CrTiMoWNb1Fe1.5AlGCr1515500.019 mm3[41]
(TiZrNb)14SnMoSi3N415400.368 mm3[49]
FeCrAlTiMoWNb3GCr1515500.630 mm3[51]
AlNbTaZr0.8Si3N4120101.16 × 10-4[53]
MoNbTaWSi3N43010RT1.17 × 10-5[36]
6001.20 × 10-5
8001.25 × 10-5
10001.48 × 10-5
AlMoNbTaCu0.4WC60200.41 mm3[42]
AlCoCrMoV0.8Si3N420500.63 × 10-5[56]
TiMoNbTaWGCr15101.37 × 10-4[58]
TiMoNbTaW-2(Si3N4)GCr1530209.5 × 10-3 mm31.31 × 10-4[59]
TiMoNbZrSi3N45041.2 mg[38]
TiNiMoNbTaGCr1515603.8 × 10-6 mm30.32 × 10-6[37]
MoNbTaW-3(Y2O3)Si3N4305RT3.33 × 10-5[61]
6001.42 × 10-5
8001.08 × 10-5
TiVNbTaSi3N46051.06 mg[63]
TiVNbTaCrSi3N46050.04 mg
TiVNbTaZrSi3N46050.87 mg
TiVNbTaWSi3N46050.06 mg
Table 3  Wear resistance of LC-RHEACs[36-38,41,42,47,49,51,53,56,58,59,61,63]
Fig.7  SEM images of wear morphologies of Nb1.5 (A—deformation area, B—abrasion area) (a), Nb2.0 (b), Nb2.5 (c), Nb3.0 (d), and M2 steel (e), and wear volume losses of RHEACs and substrate (f)[48]
Fig.8  SEM images of wear morphologies of TC4 substrate and AlNbTaZr x RHEACs[53]
(a) TC4 substrate (b) Zr0.4
(c) Zr0.8 (D—furrow area, E—oxide glaze layer area) (d) Zr1.0 RHEACs
CoatingSubstrateHEACRef.

Type

Corrosion potential

V

Corrosion current density

A·cm-2

Corrosion potential

V

Corrosion current density

A·cm-2

(TiZrNb)SnMoTC4 alloy-1.153.89 × 10-6-1.01.10 × 10-6[49]
NiTiCrNbTa1.0TC4 alloy-0.2331.63 × 10-7[52]
TiMoNbZrSS 316L-0.7361.002 × 10-5-0.4742.939 × 10-6[57]
TiZrAlNbTC4 alloy-0.38534.53 × 10-8[62]
NbTaTiVTC4 alloy-0.4589.198 × 10-8[63]
NbTaTiVCr-0.3906.262 × 10-8
NbTaTiVZr-0.4182.275 × 10-7
NbTaTiVW-0.3784.294 × 10-8
AlCoCrMoSS 904L-0.1591.14 × 10-4-0.1791.44 × 10-3[56]
AlCoCrMoV-0.1452.80 × 10-5
TiMoNbCrTC4 alloy-0.3972.797 × 10-9-0.2301.722 × 10-10[70]
TiMoNbTa-0.2481.695 × 10-9
TiMoNbZr-0.2771.788 × 10-9
WVTaTi42CrMo-0.77836.466 × 10-6[78]
WVTaTiCr-0.31984.337 × 10-7
Table 4  Corrosion resistance of LC-RHEACs[49,52,56,57,62,63,70,78]
Fig.9  Surface morphologies of the oxide layer formed on the surface of Zr0.2 (a) and Zr1.0 (b) coatings[53]
1 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys[J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
2 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy[J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722 pmid: 33004516
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
4 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
6 Nutor R K, Cao Q P, Wang X D, et al. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys[J]. Adv. Eng. Mater., 2020, 22: 2000466
7 Mills L H, Emigh M G, Frey C H, et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy[J]. Acta Mater., 2023, 245: 118618
8 Tseng K K, Juan C C, Tso S, et al. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys[J]. Entropy, 2018, 21: 15
9 Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys[J]. Acta Metall. Sin., 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
10 Li T X, Wang S D, Fan W X, et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy[J]. Acta Mater., 2023, 246: 118728
11 Zhang E K, Tang Y, Wen M W, et al. On phase stability of Mo-Nb-Ta-W refractory high entropy alloys[J]. Int. J. Refract. Met. Hard Meter., 2022, 103: 105780
12 El Atwani O, Vo H T, Tunes M A, et al. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments[J]. Nat. Commun., 2023, 14: 2516
doi: 10.1038/s41467-023-38000-y pmid: 37130885
13 Cheng T, Wei G, Jiang S M, et al. Enhanced resistance to helium irradiations through unusual interaction between high-entropy-alloy and helium[J]. Acta Mater., 2023, 248: 118765
14 Ouyang D, Chen Z J, Yu H B, et al. Oxidation behavior of the Ti38V15Nb23Hf24 refractory high-entropy alloy at elevated temperatures[J]. Corros. Sci., 2022, 198: 110153
15 Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility[J]. Nat. Mater., 2020, 19: 1175
16 Gou S Y, Gao M Y, Shi Y Z, et al. Additive manufacturing of ductile refractory high-entropy alloys via phase engineering[J]. Acta Mater., 2023, 248: 118781
17 Liu Y N, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review[J]. J. Manuf. Process., 2021, 66: 341
18 Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surf. Technol., 2020, 49(10): 1
张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1
19 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Opt. Laser Technol., 2021, 138: 106915
20 Kumar D. Recent advances in tribology of high entropy alloys: A critical review[J]. Prog. Mater. Sci., 2023, 136: 101106
21 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534
22 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater. Chem. Phys., 2012, 132: 233
23 Snyder J C, Rupp M, Hansen K, et al. Finding density functionals with machine learning[J]. Phys. Rev. Lett., 2012, 108: 253002
24 Mu Y K. Design and fabrication of refractory multicomponent high entropy alloys coating with laser cladding[D]. Kunming: Kunming University of Science and Technology, 2017
穆永坤. 激光熔覆难熔多组元高熵合金涂层设计与制备[D]. 昆明: 昆明理工大学, 2017
25 Wen C. Composition design and property optimization of high entropy alloys based on machine learning[D]. Beijing: University of Science and Technology Beijing, 2021
文 成. 基于机器学习的高熵合金成分设计与性能优化[D]. 北京: 北京科技大学, 2021
26 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
27 Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J]. Powder Technol., 2020, 367: 724
28 Xia M, Chen Y X, Wang R, et al. Fabrication of spherical MoNbTaWZr refractory high-entropy powders by spray granulation combined with plasma spheroidization[J]. J. Alloys Compd., 2023, 931: 167542
29 Zhang H, Cai J L, Geng J L, et al. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process[J]. Int. J. Refract. Met. Hard Mater., 2023, 112: 106163
30 Shen Z L, Su H J, Liu Y, et al. Laser additive manufacturing of melt-grown Al2O3/GdAlO3 eutectic ceramic composite: Powder designs and crack analysis with thermo-mechanical simulation[J]. J. Eur. Ceram. Soc., 2022, 42: 6583
31 Sun B, Wang Q Q, Chen Y X, et al. Design of heterogeneous structure for enhancing formation quality of laser-manufactured WTaMoNb refractory high-entropy alloy[J]. J. Alloys Compd., 2023, 953: 170066
32 Arrizubieta J I, Martínez S, Lamikiz A, et al. Instantaneous powder flux regulation system for laser metal deposition[J]. J. Manuf. Process., 2017, 29: 242
33 Dobbelstein H, Gurevich E L, George E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Addit. Manuf., 2019, 25: 252
doi: 10.1016/j.addma.2018.10.042
34 Melia M A, Whetten S R, Puckett R, et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Appl. Mater. Today, 2020, 19: 100560
35 Zhao Y, Wu M F, Jiang P C, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. J. Mater. Res. Technol., 2022, 20: 1908
36 Zhao Y, Wu M F, Hou J, et al. Microstructure and high temperature properties of laser cladded WTaNbMo refractory high entropy alloy coating assisted with ultrasound vibration[J]. J. Alloys Compd., 2022, 920: 165888
37 Zhao S, Taheri M, Shirvani K, et al. Microstructure of NbMoTaTiNi refractory high-entropy alloy coating fabricated by ultrasonic field-assisted laser cladding process[J]. Coatings, 2023, 13: 995
38 Gao Q, Liu H, Chen P J, et al. Multi-objective optimization for laser cladding refractory MoNbTiZr high-entropy alloy coating on Ti6Al4V[J]. Opt. Laser Technol., 2023, 161: 109220
39 Goel S, Neikter M, Capek J, et al. Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment[J]. Mater. Des., 2020, 195: 109045
40 Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis[J]. Mater. Des., 2021, 202: 109550
41 Guo Y X, Wang H L, Liu Q B. Microstructure evolution and strengthening mechanism of laser-cladding MoFe x CrTiWAlNb y refractory high-entropy alloy coatings[J]. J. Alloys Compd., 2020, 834: 155147
42 Liu S S, Zhao G L, Wang X H, et al. Design and characterization of AlNbMoTaCu x high entropy alloys laser cladding coatings[J]. Surf. Coat. Technol., 2022, 447: 128832
43 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
44 Wu J X, Li P Y, Dong H F, et al. Research progress in composition design, microstructure and properties of refractory high entropy alloys[J]. J. Aeronaut. Mater., 2022, 42(6): 33
武俊霞, 李培友, 董洪峰 等. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33
doi: 10.11868/j.issn.1005-5053.2021.000205
45 Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys[J]. Mater. Rep., 2021, 35: 17064
陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35: 17064
46 Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surf. Coat. Technol., 2017, 311: 321
47 Guo Y X, Liu Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102: 78
48 Wang H L, Liu Q B, Guo Y X, et al. MoFe1.5CrTiWAlNb x refractory high-entropy alloy coating fabricated by laser cladding[J]. Intermetallics, 2019, 115: 106613
49 Guo Y X, Li X M, Liu Q B. A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model[J]. Mater. Des., 2020, 196: 109085
50 Guan H T, Chai L J, Wang Y Y, et al. Microstructure and hardness of NbTiZr and NbTaTiZr refractory medium-entropy alloy coatings on Zr alloy by laser cladding[J]. Appl. Surf. Sci., 2021, 549: 149338
51 Kuang S H, Zhou F, Zheng S S, et al. Annealing-induced microstructure and properties evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding[J]. Intermetallics, 2021, 129: 107039
52 Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and properties of NiTiCrNbTa x refractory high-entropy alloy coatings with variable Ta content[J]. J. Alloys Compd., 2022, 891: 161756
53 Zhao P, Li J, Zhang Y, et al. Wear and high-temperature oxidation resistances of AlNbTaZr x high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding[J]. J. Alloys Compd., 2021, 862: 158405
54 Chen L, Wang Y Y, Hao X H, et al. Lightweight refractory high entropy alloy coating by laser cladding on Ti-6Al-4V surface[J]. Vacuum, 2021, 183: 109823
55 Lou L Y, Liu K C, Jia Y J, et al. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding[J]. Surf. Coat. Technol., 2022, 447: 128873
56 Liao T H, Wang Z L, Wu X H, et al. Effect of V on microstructure, wear and corrosion properties in AlCoCrMoV x high entropy alloy coatings by laser cladding[J]. J. Mater. Res. Technol., 2023, 23: 4420
57 Huang Y M, Wang Z Y, Xu Z Z, et al. Microstructure and properties of TiNbZrMo high entropy alloy coating[J]. Mater. Lett., 2021, 285: 129004
58 Ren Z Y, Hu Y L, Tong Y G, et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J]. Tribol. Int., 2023, 182: 108366
59 Hao X H, Liu H X, Zhang X W, et al. Microstructure and wear resistance of in-situ TiN/(Nb, Ti)5Si3 reinforced MoNbTaWTi-based refractory high entropy alloy composite coatings by laser cladding[J]. Appl. Surf. Sci., 2023, 626: 157240
60 Zhou J L, Cheng Y H, Wan Y X, et al. Solidification characteristics and microstructure of TaNbZrTi refractory high entropy coating by extreme high-speed laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106257
61 Wang Y, Li P J, Ma N, et al. Effect of Y2O3 on the microstructure and tribology property of WMoTaNb refractory high entropy alloy coating prepared by laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106273
62 Jiang X J, Wang S Z, Fu H, et al. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding[J]. Mater. Lett., 2022, 308: 131131
63 Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and performance enhancement of NbTaTiV-(Cr, Zr, W) single-phase refractory high-entropy alloy coatings: Role of additional elements[J]. J. Alloys Compd., 2023, 951: 169918
64 Li Q T, Lei Y P, Fu H G, et al. Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs[J]. Rare Met., 2018, 37: 852
65 Cheng W, Ji L F, Zhang L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. J. Mater. Res. Technol., 2023, 24: 7497
66 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
67 Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys[J]. Mater. Des., 2021, 211: 110129
68 Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy[J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105195
69 Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties[J]. Scr. Mater., 2020, 178: 329
70 Liu L, Liu H X, Zhang X W, et al. Corrosion behavior of TiMoNbX (X = Ta, Cr, Zr) refractory high entropy alloy coating prepared by laser cladding based on TC4 titanium alloy[J]. Materials, 2023, 16: 3860
71 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678
72 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy[J]. Mater. Des., 2019, 162: 256
73 Massalski T B, Okamoto H. Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park: ASM International, 1990: 2249
74 Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12: 713
75 Kawamoto M, Okabayashi K. Study of dry sliding wear of cast iron as a function of surface temperature[J]. Wear, 1980, 58: 59
76 Alvi S, Jarzabek D M, Kohan M G, et al. Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering[J]. ACS Appl. Mater. Interfaces, 2020, 12: 21070
77 Rahimi H, Mozaffarinia R, Hojjati Najafabadi A. Corrosion and wear resistance characterization of environmentally friendly sol-gel hybrid nanocomposite coating on AA5083[J]. J. Mater. Sci. Technol., 2013, 29: 603
doi: 10.1016/j.jmst.2013.03.013
78 Xu Z M, Sun Z P, Li C, et al. Effect of Cr on microstructure and properties of WVTaTiCr x refractory high-entropy alloy laser cladding[J]. Materials, 2023, 16: 3060
79 Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: The role of Mo[J]. Int. J. Refract. Met. Hard Mater., 2022, 102: 105721
80 Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys[J]. Corros. Sci., 2019, 159: 108161
81 Liu C Y, Ma Z L, Li H Y, et al. Designing NbTiTa-Cr/Al refractory complex concentrated alloys with balanced strength-ductility-oxidation resistance properties: Insights into oxidation mechanisms[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106308
82 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metall. Sin., 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
83 Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys[J]. Mater. Res. Innov., 2000, 3: 231
[1] LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot[J]. 金属学报, 2025, 61(1): 12-28.
[2] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[3] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[4] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[5] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[6] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[7] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[8] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[9] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[10] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[11] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[12] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[13] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[14] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[15] WANG Hanming, DU Yin, PEI Xuhui, WANG Haifeng. Tribological Property and Wear Mechanism of NbMoZrVSi x Refractory High-Entropy Alloy Strengthened by Eutectic Structure[J]. 金属学报, 2024, 60(7): 937-946.
No Suggested Reading articles found!