Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (11): 1487-1498    DOI: 10.11900/0412.1961.2022.00481
Research paper Current Issue | Archive | Adv Search |
Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries
TIAN Xiaosheng1,2, LU Zhengguan1, XU Lei1, WU Jie1(), YANG Rui1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

TIAN Xiaosheng, LU Zhengguan, XU Lei, WU Jie, YANG Rui. Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries. Acta Metall Sin, 2024, 60(11): 1487-1498.

Download:  HTML  PDF(4834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 718 alloy is widely used in aeronautical fields owing to its excellent mechanical properties and high-temperature resistance. Hot isostatic pressing (HIPing) is a powder metallurgy (PM) processing technology that produces near or net-shape components and solves the problems of macro-segregation and microstructure inhomogeneity. However, the application of PM Inconel 718 alloys has been limited by prior particle boundaries (PPBs), which can negatively impact mechanical properties, such as elongation at elevated temperatures and impact properties. To address this issue, the formation of PPBs can be suppressed during HIPing, or they can be eliminated through subsequent processing. Pre-alloyed powder of Inconel 718 was prepared using the electrode induction melting gas atomization (EIGA) method, and PM Inconel 718 alloys were prepared through the HIPing route. The resulting compacts were subjected to special high-temperature heat treatment, and their mechanical properties were tested. The mechanical properties of PM Inconel 718 test bars were found to be comparable to those of the wrought version of the alloy. However, large and complex components of PM Inconel 718 can contain undesirable PPBs due to mold shielding and insufficient degassing, resulting in poor ductility and impact properties after standard heat treatment. Special high-temperature heat treatment can effectively eliminate the PPBs in the compacts, leading to a substantial improvement in tensile ductility and impact properties. This improvement makes it possible to prepare large and complex components through HIPing with improved mechanical properties.

Key words:  Inconel 718 alloy      hot isostatic pressing      heat treatment      prior particle boundary      mechanical property     
Received:  28 September 2022     
ZTFLH:  TG132.32  
Fund: National Science and Technology Major Project of China(J2019-VⅡ-0005-0145);NStrategic Priority Research Program of the Chinese Academy of Sciences(XDA22010102);CAS Project for Young Scientists in Basic Research(YSBR-025)
Corresponding Authors:  WU Jie, associate professer, Tel: (024)83978843, E-mail: jwu10s@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00481     OR     https://www.ams.org.cn/EN/Y2024/V60/I11/1487

Fig.1  SEM image (a) and differential size distributions (D10 = 18 μm indicates 10% of the powder has a particle size of less than 18 μm, D50 = 50 μm indicates 50% of the powder has a particle size of less than 50 μm, and D90 = 96 μm indicates 90% of the powder has a particle size of less than 96 μm) (b) of Inconel 718 pre-alloyed powders
SampleTemperatureTensile propertyImpact energy
UTS / MPaYS / MPaEl / %Z / %J
Wrought[17]RT1275-14001030-116712.0-21.01530
Component1400107514.51416
Test bar1322104923.03535
Wrought[17]650oC1000-1200860-100012.0-19.015-
Component114091014.516-
Test bar106784515.017-
Table 1  Mechanical properties of powder metallurgy (PM) Inconel 718 component and test bars
Fig.2  SEM image of PM Inconel 718 test bar
Fig.3  Equivalent plastic strain (PEEQ) distributions of Inconel 718 pre-alloy powder with different grain sizes
(a) 50 µm, 0% (b) 50 µm, 60% (c) 50 µm, 100%
(d) 100 µm, 0% (e) 100 µm, 60% (f) 100 µm, 100%
Fig.4  SEM images showing the fracture surfaces of the RT tensile PM Inconel 718 powder samples with grain sizes of 15-53 µm (a) and 53-106 µm (b)
Fig.5  SEM image of PM Inconel 718 component (PPBs—prior particle boundaries)
Fig.6  Schematic of PPBs formation (EIGA—electrode induction melting gas atomization, HIP—hot isostatic pressing)
SampleTemperatureTensile propertyImpact energy
UTS / MPaYS / MPaEl / %Z / %J
HTRT1398 ± 31070 ± 113.5 ± 1.510 ± 216 ± 1
SHT11398 ± 41182 ± 117.0 ± 3.020 ± 629 ± 1
SHT21394 ± 21087 ± 322.5 ± 1.529 ± 634 ± 1
SHT31430 ± 61215 ± 125.0 ± 1.033 ± 130 ± 2
HT650oC1135 ± 6908 ± 315.0 ± 1.015 ± 1-
SHT11169 ± 14995 ± 512.0 ± 1.519 ± 1-
SHT21166 ± 4959 ± 814.0 ± 1.511 ± 2-
SHT31173 ± 71006 ± 013.5 ± 0.518 ± 0-
Table 2  Mechanical properties of PM Inconel 718 before and after special high-temperature heat treatments
Fig.7  SEM images of PM Inconel 718 alloys
(a) HT (b) SHT1 (c) SHT2 (d) SHT3
Fig.8  EBSD images (a, b) and grain size distribution histograms (c, d) of PM Inconel 718 alloys (Aave.—average grain area)
(a, c) HT (b, d) SHT2
Fig.9  TEM analyses of carbide in PM Inconel 718 alloys by HT
(a) TEM image
(b) selected area electron diffraction pattern mark-ed as 1 in Fig.9a
(c) EDS marked as 1 in Fig.9a
Fig.10  SEM fractographs of tensile samples of Inconel 718 component
(a) HT (b) SHT1 (c) SHT2 (d) SHT3
Fig.11  SEM images of longitudinal sections near the fractures of tensile samples of Inconel 718 component
(a) HT (b) SHT2
Fig.12  Low (a) and locally high (b) magnified SEM fractographs of 650oC tensile SHT2 samples of Inconel 718 component, and EDS of the dashed circle in Fig.12b (c)
Fig.13  SEM fractographs of impact samples of Inconel 718 component at room temperature
(a) HT (b) SHT2
Fig.14  Anatomical parts of PM Inconel 718 large complex component
1 Chamanfar A, Sarrat L, Jahazi M, et al. Microstructural characteristics of forged and heat treated Inconel-718 disks [J]. Mater. Des., 2013, 52: 791
2 Baccino R, Moret F, Pellerin F, et al. High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process [J]. Mater. Des., 2000, 21: 345
3 Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
4 Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys [J]. J. Powder Metall. Min., 2015, 4: 1000127
5 Xu L, Tian X S, Wu J, et al. Hot isostatic densification of Inconel 718 powder alloy, and microstructure and mechanical properties [J]. Acta Metall. Sin., 2022, 59: 693
徐 磊, 田晓生, 吴 杰 等. Inconel 718粉末合金的热等静压成形和组织性能 [J]. 金属学报, 2022, 59: 693
6 Tian X S, Wu J, Lu Z G, et al. Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys [J]. J. Mater. Res. Technol., 2022, 21: 84
7 Ning Y Q, Yao Z K, Guo H Z, et al. Investigation on hot deformation behavior of P/M Ni-base superalloy FGH96 by using processing maps [J]. Mater. Sci. Eng., 2010, A527: 6794
8 Ning Y Q, Fu M W, Yao W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application [J]. Mater. Sci. Eng., 2012, A539: 101
9 Zhao F, Yao C G, Fan K C, et al. Prior particle boundary precipitation in powder metallurgy GH4169 [J]. Aerosp. Mater. Technol., 2012, 42(1): 92
赵 丰, 姚草根, 范开春 等. 粉末GH4169合金中的原始颗粒边界问题 [J]. 宇航材料工艺, 2012, 42(1): 92
10 Mao J, Yu K L, Zhou R F. Effect of pre-heat treatment on P/M René95 superalloy microstructure [J]. Powder Metall. Technol., 1989, 7: 213
毛 健, 俞克兰, 周瑞发. 粉末预热处理对HIP René95粉末高温合金组织的影响 [J]. 粉末冶金技术, 1989, 7: 213
11 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014
常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究 [D]. 沈阳: 中国科学院金属研究所, 2014
12 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries [J]. Mater. Sci. Eng., 2017, A682: 341
13 Rao G A, Srinivas M, Sarma D S. Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718 [J]. Mater. Sci. Technol., 2004, 20: 1161
14 Rao G A, Srinivas M, Sarma D S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2006, A418: 282
15 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33: 172
16 Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. J. Mater. Sci. Technol., 2014, 30: 1289
doi: 10.1016/j.jmst.2014.04.011
17 Rao G A, Srinivas M, Sarma D S. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2004, A383: 201
18 Arzt E, Ashby M F, Easterling K E. Practical applications of hotisostatic pressing diagrams: Four case studies [J]. Metall. Trans., 1983, 14A: 211
19 Li W B, Easterling K E. Cause and effect of non-uniform densification during hot isostatic pressing [J]. Powder Metall., 1992, 35: 47
20 Li W B, Ashby M F, Easterling K E. On densification and shape change during hot isostatic pressing [J]. Acta Metall., 1987, 35: 2831
21 Nair S V, Tien J K. Densification mechanism maps for hot isostatic pressing (HIP) of unequal sized particles [J]. Metall. Mater. Trans., 1987, 18A: 97
22 Zhang M D, Liu J T, Zhang Y W, et al. Relationship between prior particle boundary of powder metallurgy superalloy and solubility of MC carbides [J]. Trans. Mater. Heat Treat., 2021, 42(5): 50
张梦迪, 刘建涛, 张义文 等. 粉末高温合金原始颗粒边界与MC型碳化物溶解度的关系 [J]. 材料热处理学报, 2021, 42(5): 50
doi: 10.13289/j.issn.1009-6264.2020-0477
23 Hou J, Dong J X, Yao Z H, et al. Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096 [J]. Mater. Sci. Eng., 2018, A724: 17
24 Cai C, Pan K K, Teng Q, et al. Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy [J]. Mater. Sci. Eng., 2019, A760: 19
25 Qiu C L, Attallah M M, Wu X H, et al. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder [J]. Mater. Sci. Eng., 2013, A564: 176
26 Tillmann W, Schaak C, Nellesen J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting [J]. Addit. Manuf., 2017, 13: 93
27 Ye C W, Zhang X H, Wang L, et al. Effect of re-HIPing on microstructure of HIPed TC4 alloy [J]. Trans. Mater. Heat Treat., 2013, 34(6): 99
叶呈武, 张绪虎, 王 亮 等. 二次热等静压对TC4合金组织的影响 [J]. 材料热处理学报, 2013, 34(6): 99
28 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact [J]. Mater. Sci. Eng., 2014, A599: 186
29 Teng Q, Wei Q S, Xue P J, et al. Effects of processing temperatures on FGH4097 superalloy fabricated by hot isostatic pressing: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2019, A739: 118
30 Fayman Y C. Microstructural characterization and elemental partitioning in a direct-aged superalloy (DA 718) [J]. Mater. Sci. Eng., 1987, 92: 159
31 Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
32 Pfaendtner J A, McMahon Jr C J. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—An example of dynamic embrittlement [J]. Acta Mater., 2001, 49: 3369
33 Krupp U. Dynamic embrittlement-time-dependent quasi-brittle intergranular fracture at high temperatures [J]. Int. Mater. Rev., 2005, 50: 83
[1] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] ZHANG Xingxing, LUTZ Andreas, GAN Weimin, MAAWAD Emad, KRIELE Armin. Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. 金属学报, 2024, 60(8): 1091-1099.
[4] LI Yawei, XIE Guang, KE Yubin, LU Yuzhang, HUANG Yaqi, ZHANG Jian. In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. 金属学报, 2024, 60(8): 1100-1108.
[5] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[6] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[7] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[8] XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. 金属学报, 2024, 60(6): 760-769.
[9] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[10] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[11] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[12] YU Hua, LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control[J]. 金属学报, 2024, 60(4): 464-472.
[13] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[14] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[15] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
No Suggested Reading articles found!