Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1179-1188    DOI: 10.11900/0412.1961.2021.00078
Research paper Current Issue | Archive | Adv Search |
Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment
LI Zhao1, JIANG He2(), WANG Tao1, FU Shuhong1, ZHANG Yong1
1.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment. Acta Metall Sin, 2022, 58(9): 1179-1188.

Download:  HTML  PDF(3432KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH2909 alloy is a low expansion superalloy developed on the base of GH2907 alloy. The mass fraction of Si is increased to accelerate the precipitation of ε phase, which improves resistance to stress-induced oxidative brittleness at grain boundaries. Increasing the mass fraction of Si also complicates the types of precipitates, and there is a long-time argument for determining precipitates in GH2909 alloy. The mechanical property is closely related to microstructure and precipitate. This work investigated the microstructure evolution of GH2909 low expansion superalloy during standard heat treatment by SEM, TEM, EPMA, and micro-chemical phase analysis. The Laves phase is the predominant phase in the wrought GH2909 alloy, according to the study. In the GH2909 alloy, the Si-rich Laves phase has a blocky form and a short rod shape. In solution treatment, the Laves phase dissolves gradually. After two-stage solution treatment, the short rod-shaped Laves phase almost completely dissolves. Slow cooling is needed to avoid re-precipitation of short rod shape Laves phase during solution treatment because Laves phase is sensitive to the cooling rate. Discontinuous G phase particles decorate grain boundaries after normal heat treatment, and a sizable discal phase precipitates in the matrix. There is also a fine phase rich in Ni and Ti in the matrix with the chemical formula Ni2.26Fe0.16Co0.50Nb0.62Ti0.43Al0.02. In the GH2909 alloy, the Laves phase, G phase, and ε phase are high in Si and Nb. During precipitation, these phases compete for Si and Nb elements. Furthermore, the micro-chemical phase analysis results demonstrate that 30% of the Si in the GH2909 alloy is finally precipitated. As a result, Si should be given special consideration in the microstructure control of the GH2909 alloy.

Key words:  GH2909 alloy      low expansion superalloy      heat treatment      microstructure evolution     
Received:  25 February 2021     
ZTFLH:  TG 146.1  
Fund: National Natural Science Foundation of China(51701011);Fundamental Research Funds for the Central Universities(FRF-TP-19-038A2);Key Laboratory Foundation(6142903180205)
About author:  JIANG He, Tel: (010)62332884, E-mail: jianghe@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00078     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1179

No.Heat treatment
T0As forged
T1980oC, 15 min, air cooling (AC)
T2980oC, 15 min, AC + 980oC, 1 h, AC
T3980oC, 15 min, AC + 980oC, 1 h, water cooling (WQ)
T4980oC, 15 min, AC + 980oC, 1 h, AC + 720oC, 8 h, furnace cooling (0.9oC·min-1) to 620oC, 8 h, AC
Table 1  Heat treatment processes of GH2909 in present work
Fig.1  Calculation results of GH2909 alloy by JMatPro software
(a) property diagram (Inset is the local magnified diagram)
(b) solid fraction variation of phases during solidification
Fig.2  Microstructure characterizations of as-received GH2909 alloy (a) and partial magnification (b)
Fig.3  TEM image and selected area electron diffraction (SAED) patterns of Laves phase in as-received GH2909 alloy
(a, b) bright field TEM image of blocky Laves phase and related SAED pattern
(c, d) bright field TEM image of short rod-like Laves phase and related SAED pattern
Fig.4  EPMA results of element distribution of Laves phase in wrought GH2909 alloy (SEM—secondary electron morphology, BSE—back-scaterred electron image)
Fig.5  SEM images of GH2909 alloy after solution treatments
(a) T1 (b) T2 (c) T3
Fig.6  SEM images of microstructures of GH2909 alloy after standard heat treatment (T4) (a) and partial magnification (b)
Fig.7  TEM images and SAED patterns of G phase on grain boundary in GH2909 alloy after standard heat treatment (T4)
(a) TEM images of G phase on grain boundary in GH2909 alloy after standard heat treatment (T4)
(b, d) partial magnifications of the areas in Fig.7a, respectively
(c, e) SAED patterns of Figs.7b and d, respectively
Fig.8  EPMA results of element distribution in GH2909 alloy after standard heat treatment (T4)
Fig.9  Bright field TEM image of γ′ phase in GH2909 alloy after standard heat treatment (T4)
Fig.10  TEM images of ε phase in GH2909 alloy after standard heat treatment (T4)
(a) bright field image (b) dark field image and SAED pattem (inset)
(c) high angle annular dark field image and EDS result
Fig.11  Uneven distribution of ε phase in GH2909 alloy after standard heat treatment (T4)
Fig.12  Micro-chemical phase analysis results for GH2909 alloy after different heat treatments
(a) mass fraction of intermetallic compound phases (wi)
(b) mass fraction of Si element in intermetallic compound phases account for the total mass of alloy (wi-Si)
1 Fan Q W, Sun Y. Investigation on heat treatment properties of GH2909 [J]. MW Met. Form., 2015, (13): 18
范黔伟, 孙 艳. GH2909热处理工艺性能的研究 [J]. 金属加工(热加工), 2015, (13): 18
2 Fan Z Y, Li X M, Song C R, et al. Effect of Si content on properties of GH2909 alloy [J]. Hot Work. Technol., 2017, 46(14): 107
樊照远, 李许明, 宋传荣 等. Si含量对GH2909合金性能的影响 [J]. 热加工工艺, 2017, 46(14): 107
3 Hayes R W, Smith D F, Wanner E A, et al. Effect of environment on the rupture behavior of alloys 909 and 718 [J]. Mater. Sci. Eng., 1994, A177: 43
4 Wang X C, Han G W, Yang Y J. Study on the forging pocess of low expansion alloy GH2909 [J]. Spec. Steel Technol., 2017, 23(3): 37
王信才, 韩光炜, 杨玉军. 低膨胀GH2909合金锻造工艺研究 [J]. 特钢技术, 2017, 23(3): 37
5 Lagow B W. Materials selection in gas turbine engine design and the role of low thermal expansion materials [J]. JOM, 2016, 68: 2770
doi: 10.1007/s11837-016-2071-2
6 Yu M, Cai K H, Li Z R, et al. Low thermal expansion superalloy [J]. Res. Metall. Mater., 2017, 43(2): 21
于 敏, 蔡凯洪, 李振瑞 等. 低膨胀高温合金概述 [J]. 金属材料研究, 2017, 43(2): 21
7 Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909 [J]. Chin. J. Mater. Res., 2021, 35: 330
徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响 [J]. 材料研究学报, 2021, 35: 330
8 Zhao Y X, Zhang S W. Oxidation behavior of alloy GH2909 at 700oC [A]. High Temperature Structural Materials for Power and Energy—11th China Superalloy Annual Conference [C]. Beijing, China: Metallurgical Industry Press, 2007: 79
赵宇新, 张绍维. GH2909合金在700℃的氧化行为 [A]. 动力与能源用高温结构材料——第十一届中国高温合金年会论文集 [C]. 北京, 中国: 冶金工业出版社, 2007: 79
9 Wang C M, Cai Y Z, Hu C J, et al. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy [J]. J. Mech. Sci. Technol., 2017, 31: 2497
doi: 10.1007/s12206-017-0447-z
10 Heck K A, Smith D R, Smith J S, et al. The physical metallurgy of a silicon-containing low-expansion superalloy [A]. Superalloys 1988—Proceedings of the Sixth International Symposium on Superalloys [C]. Warrendale, PA: Metallurgical Society, Inc., 1988: 151
11 Guo X P, Kusabiraki K, Saji S. Intragranular precipitates in Incoloy alloy 909 [J]. Scr. Mater., 2001, 44: 55
doi: 10.1016/S1359-6462(00)00576-5
12 Li Z, Wang T, Xu X, et al. Structure analysis on stress rupture notch sensitivity for GH2909 alloy forgings [J]. Heat Treat. Met., 2020, 45(5): 17
李 钊, 王 涛, 徐 雄 等. GH2909合金锻件持久缺口敏感性组织分析 [J]. 金属热处理, 2020, 45(5): 17
13 Sato K, Ohno T. Development of low thermal expansion superalloy [J]. J. Mater. Eng. Perform., 1993, 2: 511
doi: 10.1007/BF02661734
14 Kusabiraki K, Amada E, Ooka T. Precipitation and growth of γ' phase in an Fe-38Ni-13Co-4.7Nb superalloy [J]. ISIJ Int., 1996, 36: 208
doi: 10.2355/isijinternational.36.208
15 Chen Z, Brooks J W, Loretto M H. Precipitation in Incoloy alloy 909 [J]. Mater. Sci. Technol., 2013, 9: 647
doi: 10.1179/mst.1993.9.8.647
16 Chen Z. Identification of orthorhombic phase in Incoloy alloy 909 [J]. Scr. Metall. Mater., 1992, 26: 1077
doi: 10.1016/0956-716X(92)90233-5
17 Wang X C. Effect of forging process and heat treatment process on structure and properties of GH2909 alloy [J]. Spec. Steel Technol., 2013, 19(2): 8
王信才. 锻造工艺及热处理制度对GH2909合金组织与性能的影响 [J]. 特钢技术, 2013, 19(2): 8
18 Chen Q. Analysis on notch sensitivity of low thermal expansion superalloys GH2909 [J]. Iron Steel Vanad. Titan., 2020, 41(6): 175
陈 琦. 低膨胀GH2909合金缺口敏感性问题分析 [J]. 钢铁钒钛, 2020, 41(6): 175
19 Wanner E A, DeAntonio D A, Smith D F, et al. The current status of controlled thermal expansion superalloys [J]. JOM, 1991, 43(3): 38
doi: 10.1007/BF03223147
20 Covarrubias O, Elizarrarás O, Colás R. Effect of heat treatment on mechanical properties of alloy 909 [J]. Mater. Sci. Technol., 2011, 27: 1092
doi: 10.1179/026708310X12677993662005
21 Yan F, Li R Y, Li J M, et al. The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909 [J]. Mater. Sci. Eng., 2014, A598: 62
22 Cieslak M J, Headley T J, Knorovsky G A, et al. A comparison of the solidification behavior of Incoloy 909 and Inconel 718 [J]. Metall. Trans., 1990, 21A: 479
23 Balachander M A, Vishwakarma K, Tang B, et al. Microstructure characterisation of solution treated (ST) and solution treated and aged (STA) Incoloy 909 [J]. Mater. Sci. Technol., 2011, 27: 805
doi: 10.1179/026708310X12683157551414
24 Heck K A. The effects of silicon and processing on the structure and properties of Incoloy alloy 909 [A]. RussellKC, SmithDF. Physical Metallurgy of Controlled Expansion Invar-Type Alloys [M]. Warrendale, PA: TMS, 1990: 273
25 Tang B, Jiang L, Hu R, et al. Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy [J]. Mater. Charact., 2013, 78: 144
doi: 10.1016/j.matchar.2013.02.006
26 Wang F, Ma D X, Bührig-Polaczek A. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy [J]. Sci. Technol. Adv. Mater., 2015, 16: 025004
27 Balachander M A, Vishwakarma K, Richards N L. Overaged metallography of alloy 909, a low coefficient of expansion superalloy [J]. Mater. Sci. Technol., 2012, 28: 380
doi: 10.1179/1743284710Y.0000000015
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[5] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[11] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[12] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[15] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
No Suggested Reading articles found!