|
|
Non-Equilibrium Interface Dynamics Theory |
WANG Haifeng( ), PU Zhenxin, ZHANG Jianbao |
Advanced Lubrication and Sealing Materials Research Center, State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
WANG Haifeng, PU Zhenxin, ZHANG Jianbao. Non-Equilibrium Interface Dynamics Theory. Acta Metall Sin, 2025, 61(1): 29-42.
|
Abstract Recently, the rapid advancement of extreme non-equilibrium material processing and fabrication techniques, such as 3D printing and rapid die-casting, has led to the continuous development of new materials with exceptional properties. However, current non-equilibrium processing technologies face technical challenges, such as the lack of clear guidelines for process optimization, which considerably limits the advancement and application of advanced materials. The solidification and solid phase transformations involved in materials prepared through non-equilibrium processing pertain to a non-equilibrium dissipative system and manifest throughout the entire dynamic process of material fabrication. By investigating key scientific issues such as non-equilibrium phase transformation dynamics, non-equilibrium solute diffusion, and solute-drag effects, developing a theoretical framework for the entire non-equilibrium material processing, from solidification to solid phase transformation is possible. This not only provides theoretical support for the design and fabrication of non-equilibrium materials but also introduces novel concepts for optimizing process parameters in non-equilibrium processing technologies. This review is crucial for advancing non-equilibrium phase transformation theory and deepening our understanding of fundamental theoretical research. Interfaces play a critical role in microstructure control during material processing, thereby making an accurate theoretical description of their kinetics is especially important. This review focuses on the common characteristics of liquid/solid interfaces during melting, solid/liquid interfaces during solidification, and solid/solid interfaces during solid state phase transformations and summarizes and analyzes the history and current state of sharp-interface models for interface kinetics. Using the solidification of binary alloys as an example, the review first introduces interface kinetic theories under local non-equilibrium conditions, covering descriptions of interface kinetic processes and interface kinetic models for steady-state and non-steady-state conditions. The physical nature of one-step and two-step trans-interface diffusion is demonstrated. Next, the review describes interface kinetic theories under full non-equilibrium conditions by comparing the applications of the kinetic energy method and the effective mobility method for non-equilibrium solute diffusion in bulk phases. Thereafter, it introduces interface kinetic theories incorporating the partial solute drag effect present and discusses limitations in current methods for addressing partial solute drag. This study aims to enhance understanding of interface kinetics, offering insights into microstructure control. Finally, an outlook on the future of non-equilibrium interface kinetic theories is provided, which outlines directions for future research.
|
Received: 03 September 2024
|
|
Fund: National Natural Science Foundation of China(51975474);Fundamental Research Funds for the Central Universities(3102019JC001) |
Corresponding Authors:
WANG Haifeng, professor, Tel: (029)88460311, E-mail: haifengw81@nwpu.edu.cn
|
1 |
Li Q, Li X R, Dong B X, et al. Metallurgy and solidification microstructure control of fusion-based additive manufacturing fabricated metallic alloys: A review[J]. Acta Metall. Sin. (Eng. Lett.), 2024, 37: 29
|
2 |
Ren S, Wu J Z, Zhang Y, et al. Numerical simulation on effects of spatial laser beam profiles on heat transport during laser directed energy deposition of 316L stainless steel[J]. Acta Metall. Sin., 2024, 60: 1678
doi: 10.11900/0412.1961.2022.00509
|
|
任 松, 吴家柱, 张 屹 等. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60: 1678
|
3 |
Wang Y Q, Fu K, Zhao Y Z, et al. Non-equilibrium solidification behavior and microstructure evolution of undercooled Fe7(CoNi-Mn)80B13 eutectic high-entropy alloy[J]. Acta Metall. Sin., 2025, 61: 143
|
|
王叶青, 付 珂, 赵永柱 等. Fe7(CoNiMn)80B13共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61: 143
|
4 |
Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram[J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
|
|
胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57: 1199
|
5 |
Zhu J L, Wang Q, Wang H P. Thermophysical properties and atomic distribution of undercooled liquid Cu[J]. Acta. Metall. Sin., 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
|
|
朱姜蕾, 王 庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
|
6 |
Zener C. Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
|
7 |
Wert C, Zener C. Interference of growing spherical precipitate particles[J]. J. Appl. Phys., 1950, 21: 5
|
8 |
Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy[M]. 3rd Ed., New York: Pergamon, 2002: 1
|
9 |
Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
|
10 |
Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon[J]. Phys. Rep., 2019, 818: 1
doi: 10.1016/j.physrep.2019.06.002
|
11 |
Sobolev S L. Local-nonequilibrium model for rapid solidification of undercooled melts[J]. Phys. Lett., 1995, 199A: 383
|
12 |
Liang C, Wang X J, Wang H P. Formation mechanism of B2 phase and micro-mechanical property of rapidly solidified Ti-Al-Nb alloy[J]. Acta Metall. Sin., 2022, 58: 1169
|
|
梁 琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58: 1169
|
13 |
Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
|
|
翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
|
14 |
Wang H F, Wang K, Kuang W W, et al. The development of non-equilibrium theories[J]. Sci. Sin. Technol., 2015, 45: 358
|
|
王海丰, 王 慷, 况望望 等. 非平衡凝固理论的发展[J]. 中国科学: 技术科学, 2015, 45: 358
|
15 |
Aziz M J. Model for solute redistribution during rapid solidification[J]. J. Appl. Phys., 1982, 53: 1158
|
16 |
Baker J C, Cahn J W. Solute trapping by rapid solidification[J]. Acta Metall., 1969, 17: 575
|
17 |
Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
|
18 |
Baker J C. Interfacial partitioning during solidification[D]. Cambridge: Massachusetts Institute of Technology, 1965
|
19 |
Hillert M, Rettenmayr M. Deviation from local equilibrium at migrating phase interfaces[J]. Acta Mater., 2003, 51: 2803
|
20 |
Hillert M, Odqvist J, Ågren J. Interface conditions during diffusion-controlled phase transformations[J]. Scr. Mater., 2004, 50: 547
|
21 |
Wang H F, Liu F, Zhai H M, et al. Application of the maximal entropy production principle to rapid solidification: A sharp interface model[J]. Acta Mater., 2012, 60: 1444
|
22 |
Kuang W W, Wang H F, Zhang J B, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications[J]. Acta Mater., 2016, 120: 415
|
23 |
Kuang W W, Wang H F, Li X, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications[J]. Acta Mater., 2018, 159: 16
|
24 |
Onsager L. Reciprocal relations in irreversible processes. I[J]. Phys. Rev., 1931, 37: 405
|
25 |
Onsager L. Reciprocal relations in irreversible processes. II[J]. Phys. Rev., 1931, 38: 2265
|
26 |
Hillert M. An application of irreversible thermodynamics to diffusional phase transformations[J]. Acta Mater., 2006, 54: 99
|
27 |
Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metall., 1988, 36: 2335
|
28 |
Jackson K A, Beatty K M, Gudgel K A. An analytical model for non-equilibrium segregation during crystallization[J]. J. Cryst. Growth, 2004, 271: 481
|
29 |
Buchmann M, Rettenmayr M. Non-equilibrium transients during solidification—A numerical study[J]. Scr. Mater., 2008, 58: 106
|
30 |
Hareland C A, Guillemot G, Gandin C A, et al. The thermodynamics of non-equilibrium interfaces during phase transformations in concentrated multicomponent alloys[J]. Acta Mater., 2022, 241: 118407
|
31 |
Wang H F, Galenko P K, Zhang X, et al. Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification[J]. Acta Mater., 2015, 90: 282
|
32 |
Galenko P. Solute trapping and diffusionless solidification in a binary system[J]. Phys. Rev., 2007, 76E: 031606
|
33 |
Galenko P. Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy[J]. Phys. Rev., 2002, 65B: 144103
|
34 |
Kittl J A, Sanders P G, Aziz M J, et al. Complete experimental test of kinetic models for rapid alloy solidification[J]. Acta Mater., 2000, 48: 4797
|
35 |
Eckler K, Herlach D M, Aziz M J. Search for a solute-drag effect in dendritic solidification[J]. Acta Metall. Mater., 1994, 42: 975
|
36 |
Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
|
37 |
Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Phys. Rev. Lett., 2011, 107: 025505
|
38 |
Aziz M J, Boettinger W J. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J]. Acta Metall. Mater., 1994, 42: 527
|
39 |
Wang K, Wang H F, Liu F, et al. Modeling dendrite growth in undercooled concentrated multi-component alloys[J]. Acta Mater., 2013, 61: 4254
|
40 |
Wang K, Wang H F, Liu F, et al. Modeling rapid solidification of multi-component concentrated alloys[J]. Acta Mater., 2013, 61: 1359
|
41 |
Wang K, Wang H F, Liu F, et al. Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys[J]. Acta Mater., 2014, 67:220
|
42 |
Zhang J B, Cui D X, Li X, et al. Revealing the phase-transformation path in a FeCoNiSn x eutectic high entropy alloy system by crystallographic orientation relationships[J]. J. Mater. Sci. Technol., 2023, 156: 92
|
43 |
Zhou Y H, Zhang J Y, Zhang J, et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures[J]. Acta Mater., 2024, 268: 119770
|
44 |
Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Addit. Manuf., 2019, 25: 204
doi: 10.1016/j.addma.2018.10.046
|
45 |
Gu J, Ju J, Wang R, et al. Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding[J]. J. Therm. Spray Technol., 2022, 31: 2609
|
46 |
Ju J, Yu H Y, Zhao Y L, et al. Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization[J]. Corros. Sci., 2024, 227: 111800
|
47 |
Yang T, Zhao Y L, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys[J]. Acta Mater., 2020, 189: 47
doi: 10.1016/j.actamat.2020.02.059
|
48 |
Zhang J B, Wang H F, Kuang W W, et al. Rapid solidification of non-stoichiometric intermetallic compounds: Modeling and experimental verification[J]. Acta Mater., 2018, 148: 86
|
49 |
Zhang J B, Wang H F, Zhang F, et al. Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound[J]. J. Alloys Compd., 2019, 781: 13
|
50 |
Zhao J F, Li M X, Wang H P, et al. A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy[J]. Acta Mater., 237, 2022: 118127
|
51 |
Wang H P, Liao H, Hu L, et al. Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space[J]. Adv. Mater., 2024, 36: 2313162
|
52 |
Wang H P, Liao H, Chang J, et al. Decoupling effect stimulated independent dendrite growth of eutectic phases under microgravity and containerless states[J]. Mater. Today, 2024, 75: 386
|
53 |
Zhang J B, Zhang F, Luo X, et al. Rapid solidification of a FeSi intermetallic compound in undercooled melts: Dendrite growth and microstructure transitions[J]. J. Mater. Sci., 2020, 55: 4094
|
54 |
Zhang J B, Hua D P, Cui D X, et al. Subgrain-assisted spontaneous grain refinement in rapid solidification of undercooled melts[J]. J. Mater. Sci. Technol., 2024, 174: 234
doi: 10.1016/j.jmst.2023.06.068
|
55 |
Cui D X, Zhang J B, Li X, et al. Atomistic insights into sluggish crystal growth in an undercooled CoNiCrFe multi-principal element alloy[J]. J. Alloys Compd., 2023, 941: 168881
|
56 |
Cui D X, Qu J R, Zhang J B, et al. Atomistic insights into sluggish crystal growth in CoNi-containing multi-principal element alloys[J]. J. Mater. Res. Technol., 2024, 29: 109
|
57 |
Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|