Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 29-42    DOI: 10.11900/0412.1961.2024.00306
Overview Current Issue | Archive | Adv Search |
Non-Equilibrium Interface Dynamics Theory
WANG Haifeng(), PU Zhenxin, ZHANG Jianbao
Advanced Lubrication and Sealing Materials Research Center, State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

WANG Haifeng, PU Zhenxin, ZHANG Jianbao. Non-Equilibrium Interface Dynamics Theory. Acta Metall Sin, 2025, 61(1): 29-42.

Download:  HTML  PDF(2033KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, the rapid advancement of extreme non-equilibrium material processing and fabrication techniques, such as 3D printing and rapid die-casting, has led to the continuous development of new materials with exceptional properties. However, current non-equilibrium processing technologies face technical challenges, such as the lack of clear guidelines for process optimization, which considerably limits the advancement and application of advanced materials. The solidification and solid phase transformations involved in materials prepared through non-equilibrium processing pertain to a non-equilibrium dissipative system and manifest throughout the entire dynamic process of material fabrication. By investigating key scientific issues such as non-equilibrium phase transformation dynamics, non-equilibrium solute diffusion, and solute-drag effects, developing a theoretical framework for the entire non-equilibrium material processing, from solidification to solid phase transformation is possible. This not only provides theoretical support for the design and fabrication of non-equilibrium materials but also introduces novel concepts for optimizing process parameters in non-equilibrium processing technologies. This review is crucial for advancing non-equilibrium phase transformation theory and deepening our understanding of fundamental theoretical research. Interfaces play a critical role in microstructure control during material processing, thereby making an accurate theoretical description of their kinetics is especially important. This review focuses on the common characteristics of liquid/solid interfaces during melting, solid/liquid interfaces during solidification, and solid/solid interfaces during solid state phase transformations and summarizes and analyzes the history and current state of sharp-interface models for interface kinetics. Using the solidification of binary alloys as an example, the review first introduces interface kinetic theories under local non-equilibrium conditions, covering descriptions of interface kinetic processes and interface kinetic models for steady-state and non-steady-state conditions. The physical nature of one-step and two-step trans-interface diffusion is demonstrated. Next, the review describes interface kinetic theories under full non-equilibrium conditions by comparing the applications of the kinetic energy method and the effective mobility method for non-equilibrium solute diffusion in bulk phases. Thereafter, it introduces interface kinetic theories incorporating the partial solute drag effect present and discusses limitations in current methods for addressing partial solute drag. This study aims to enhance understanding of interface kinetics, offering insights into microstructure control. Finally, an outlook on the future of non-equilibrium interface kinetic theories is provided, which outlines directions for future research.

Key words:  interface kinetics      non-equilibrium interface      non-equilibrium solute diffusion      solute-drag effect     
Received:  03 September 2024     
ZTFLH:  TG111  
Fund: National Natural Science Foundation of China(51975474);Fundamental Research Funds for the Central Universities(3102019JC001)
Corresponding Authors:  WANG Haifeng, professor, Tel: (029)88460311, E-mail: haifengw81@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00306     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/29

Fig.1  Schematics for the interface kinetic processes in different phase transformation types (L—liquid, S—solid, I—interface, A—solvent atom A, B—solute atom B, α—solid phase α, β—solid phase β, the same below)
(a) liquid/solid interface during melting
(b) solid/liquid interface during solidification
(c) solid/solid (α/β) interface during solid-state phase-transformation
Fig.2  Schematic for the solid/liquid interface kinetic processes when the solid with the aimed composition is solidified directly from the liquid
Fig.3  Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes under a steady-state condition (Green and red curves represent the Gibbs free energy curve of the solid phase and liquid phase, respectively, the same below. Total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-CS*)ΔμA*+CS*ΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at CL*, ΔGtotal is divided into two parts: The upper one for trans-interface diffusion is ΔGD = (CL*-CS*)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-CL*)ΔμA*+CL*ΔμB*. ΔGm—Gibbs free energy of interface migration, ΔGD—Gibbs free energy of trans-interface diffusion, CS*—the solid composition at the interface, CL*—the liquid composition at the interface, ΔμA*—the chemical potential of A across the interface, ΔμB*—the chemical potential of B across the interface, μAL* and μAS*—the chemical potential at the interface for liquid and solid phase B, μBL* and μBS*—the chemical potential at the interface for liquid and solid phase B, respectively, gmS—the mole Gibbs free energy of the solid, gmL—the mole Gibbs free energy of the liquid)
Fig.4  Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes under a non-steady-state condition (Total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at CL*, ΔGtotal is divided into two parts: The upper one for trans-interface diffusion is ΔGD = (CL*-Ctrans)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-CL*)ΔμA*+CL*ΔμB*. The difference in ΔGtotal between the steady-state condition and the non-steady-state condition is ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the actual composition transferred across the interface from CS* to Ctrans (Ctrans—the solute component that finally crosses the interface and enters the solid phase)
Fig.5  Schematics for solute trans-interface diffusion in one step (a) and two steps (b) (For the former, there is only one flux for solute trans-interface diffusion, i.e., JD = JBL* = (CL*-CS*)V / Vm, whereas for the latter, there are two fluxes for solute trans-interface diffusion, i.e., JDSI = (Ctrans*-CS*)V / Vm = -JBS* and JDIL = (CL*-Ctrans*)V / Vm = JBL*. JD—the flux of solute trans-interface diffusion, JDSI—the flux of trans-interface diffusion from solid phase to interface, JDIL—the flux of trans-interface diffusion from interface to liquid phase, Ctrans*—the solute component at the interface that finally crosses the interface and enters the solid phase, V—the velocity of the migrating interface, Vm—mole volume)
Fig.6  Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes with a partial solute-drag effect under a non-steady-state condition (The total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at Ceff, ΔGtotal is divided into two parts. The upper one for trans-interface diffusion is ΔGD = (Ceff-Ctrans)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-Ceff)ΔμA*+CeffΔμB*. The difference in ΔGD between the steady-state condition and the non-steady-state condition is ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the actual composition transferred across the interface from CS* to Ctrans for trans-interface diffusion. The difference in ΔGm between the two cases with a full solute-drag effect and with a partial solute-drag effect is ΔGLeff = (CL*-Ceff)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the liquid composition ahead of the solid/liquid interface from CL* to Ceff for interface migration. It should be pointed out that Hareland et al. [30] confused the concepts of Ctrans under non-steady-state and Ceff. Furthermore, it is also queried that the definition of Ceff can be stilled be used for a non-steady state condition. For example, there will be a problem when CS* < Ceff < Ctrans (Ceff—effective concentration)
1 Li Q, Li X R, Dong B X, et al. Metallurgy and solidification microstructure control of fusion-based additive manufacturing fabricated metallic alloys: A review[J]. Acta Metall. Sin. (Eng. Lett.), 2024, 37: 29
2 Ren S, Wu J Z, Zhang Y, et al. Numerical simulation on effects of spatial laser beam profiles on heat transport during laser directed energy deposition of 316L stainless steel[J]. Acta Metall. Sin., 2024, 60: 1678
doi: 10.11900/0412.1961.2022.00509
任 松, 吴家柱, 张 屹 等. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60: 1678
3 Wang Y Q, Fu K, Zhao Y Z, et al. Non-equilibrium solidification behavior and microstructure evolution of undercooled Fe7(CoNi-Mn)80B13 eutectic high-entropy alloy[J]. Acta Metall. Sin., 2025, 61: 143
王叶青, 付 珂, 赵永柱 等. Fe7(CoNiMn)80B13共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61: 143
4 Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram[J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57: 1199
5 Zhu J L, Wang Q, Wang H P. Thermophysical properties and atomic distribution of undercooled liquid Cu[J]. Acta. Metall. Sin., 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
朱姜蕾, 王 庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
6 Zener C. Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
7 Wert C, Zener C. Interference of growing spherical precipitate particles[J]. J. Appl. Phys., 1950, 21: 5
8 Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy[M]. 3rd Ed., New York: Pergamon, 2002: 1
9 Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
10 Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon[J]. Phys. Rep., 2019, 818: 1
doi: 10.1016/j.physrep.2019.06.002
11 Sobolev S L. Local-nonequilibrium model for rapid solidification of undercooled melts[J]. Phys. Lett., 1995, 199A: 383
12 Liang C, Wang X J, Wang H P. Formation mechanism of B2 phase and micro-mechanical property of rapidly solidified Ti-Al-Nb alloy[J]. Acta Metall. Sin., 2022, 58: 1169
梁 琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58: 1169
13 Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
14 Wang H F, Wang K, Kuang W W, et al. The development of non-equilibrium theories[J]. Sci. Sin. Technol., 2015, 45: 358
王海丰, 王 慷, 况望望 等. 非平衡凝固理论的发展[J]. 中国科学: 技术科学, 2015, 45: 358
15 Aziz M J. Model for solute redistribution during rapid solidification[J]. J. Appl. Phys., 1982, 53: 1158
16 Baker J C, Cahn J W. Solute trapping by rapid solidification[J]. Acta Metall., 1969, 17: 575
17 Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
18 Baker J C. Interfacial partitioning during solidification[D]. Cambridge: Massachusetts Institute of Technology, 1965
19 Hillert M, Rettenmayr M. Deviation from local equilibrium at migrating phase interfaces[J]. Acta Mater., 2003, 51: 2803
20 Hillert M, Odqvist J, Ågren J. Interface conditions during diffusion-controlled phase transformations[J]. Scr. Mater., 2004, 50: 547
21 Wang H F, Liu F, Zhai H M, et al. Application of the maximal entropy production principle to rapid solidification: A sharp interface model[J]. Acta Mater., 2012, 60: 1444
22 Kuang W W, Wang H F, Zhang J B, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications[J]. Acta Mater., 2016, 120: 415
23 Kuang W W, Wang H F, Li X, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications[J]. Acta Mater., 2018, 159: 16
24 Onsager L. Reciprocal relations in irreversible processes. I[J]. Phys. Rev., 1931, 37: 405
25 Onsager L. Reciprocal relations in irreversible processes. II[J]. Phys. Rev., 1931, 38: 2265
26 Hillert M. An application of irreversible thermodynamics to diffusional phase transformations[J]. Acta Mater., 2006, 54: 99
27 Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metall., 1988, 36: 2335
28 Jackson K A, Beatty K M, Gudgel K A. An analytical model for non-equilibrium segregation during crystallization[J]. J. Cryst. Growth, 2004, 271: 481
29 Buchmann M, Rettenmayr M. Non-equilibrium transients during solidification—A numerical study[J]. Scr. Mater., 2008, 58: 106
30 Hareland C A, Guillemot G, Gandin C A, et al. The thermodynamics of non-equilibrium interfaces during phase transformations in concentrated multicomponent alloys[J]. Acta Mater., 2022, 241: 118407
31 Wang H F, Galenko P K, Zhang X, et al. Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification[J]. Acta Mater., 2015, 90: 282
32 Galenko P. Solute trapping and diffusionless solidification in a binary system[J]. Phys. Rev., 2007, 76E: 031606
33 Galenko P. Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy[J]. Phys. Rev., 2002, 65B: 144103
34 Kittl J A, Sanders P G, Aziz M J, et al. Complete experimental test of kinetic models for rapid alloy solidification[J]. Acta Mater., 2000, 48: 4797
35 Eckler K, Herlach D M, Aziz M J. Search for a solute-drag effect in dendritic solidification[J]. Acta Metall. Mater., 1994, 42: 975
36 Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
37 Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Phys. Rev. Lett., 2011, 107: 025505
38 Aziz M J, Boettinger W J. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J]. Acta Metall. Mater., 1994, 42: 527
39 Wang K, Wang H F, Liu F, et al. Modeling dendrite growth in undercooled concentrated multi-component alloys[J]. Acta Mater., 2013, 61: 4254
40 Wang K, Wang H F, Liu F, et al. Modeling rapid solidification of multi-component concentrated alloys[J]. Acta Mater., 2013, 61: 1359
41 Wang K, Wang H F, Liu F, et al. Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys[J]. Acta Mater., 2014, 67:220
42 Zhang J B, Cui D X, Li X, et al. Revealing the phase-transformation path in a FeCoNiSn x eutectic high entropy alloy system by crystallographic orientation relationships[J]. J. Mater. Sci. Technol., 2023, 156: 92
43 Zhou Y H, Zhang J Y, Zhang J, et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures[J]. Acta Mater., 2024, 268: 119770
44 Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Addit. Manuf., 2019, 25: 204
doi: 10.1016/j.addma.2018.10.046
45 Gu J, Ju J, Wang R, et al. Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding[J]. J. Therm. Spray Technol., 2022, 31: 2609
46 Ju J, Yu H Y, Zhao Y L, et al. Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization[J]. Corros. Sci., 2024, 227: 111800
47 Yang T, Zhao Y L, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys[J]. Acta Mater., 2020, 189: 47
doi: 10.1016/j.actamat.2020.02.059
48 Zhang J B, Wang H F, Kuang W W, et al. Rapid solidification of non-stoichiometric intermetallic compounds: Modeling and experimental verification[J]. Acta Mater., 2018, 148: 86
49 Zhang J B, Wang H F, Zhang F, et al. Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound[J]. J. Alloys Compd., 2019, 781: 13
50 Zhao J F, Li M X, Wang H P, et al. A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy[J]. Acta Mater., 237, 2022: 118127
51 Wang H P, Liao H, Hu L, et al. Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space[J]. Adv. Mater., 2024, 36: 2313162
52 Wang H P, Liao H, Chang J, et al. Decoupling effect stimulated independent dendrite growth of eutectic phases under microgravity and containerless states[J]. Mater. Today, 2024, 75: 386
53 Zhang J B, Zhang F, Luo X, et al. Rapid solidification of a FeSi intermetallic compound in undercooled melts: Dendrite growth and microstructure transitions[J]. J. Mater. Sci., 2020, 55: 4094
54 Zhang J B, Hua D P, Cui D X, et al. Subgrain-assisted spontaneous grain refinement in rapid solidification of undercooled melts[J]. J. Mater. Sci. Technol., 2024, 174: 234
doi: 10.1016/j.jmst.2023.06.068
55 Cui D X, Zhang J B, Li X, et al. Atomistic insights into sluggish crystal growth in an undercooled CoNiCrFe multi-principal element alloy[J]. J. Alloys Compd., 2023, 941: 168881
56 Cui D X, Qu J R, Zhang J B, et al. Atomistic insights into sluggish crystal growth in CoNi-containing multi-principal element alloys[J]. J. Mater. Res. Technol., 2024, 29: 109
57 Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
[1] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[2] YANG Lin, MA Changsong, LIU Lianjie, LI Jinfu. Solidification of Undercooled (Fe1 -x Co x)79.3B20.7 Alloys[J]. 金属学报, 2025, 61(1): 99-108.
[3] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HE Jie. Liquid-Solid Phase Separation Process of Pb-Al Alloy Under the Effect of Electric Current Pulses[J]. 金属学报, 2024, 60(12): 1710-1720.
[4] GUO Songyuan, LIU Wenbo, YANG Qingcheng, QI Xiaoyong, YUN Di. Phase Field Simulation of Viscous Sintering[J]. 金属学报, 2024, 60(12): 1691-1700.
[5] CHEN Mingyi, HU Junwei, YU Yaochen, NIU Haiyang. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research[J]. 金属学报, 2024, 60(10): 1329-1344.
[6] HUANG Zengxin, JIANG Yihang, LAI Chunming, WU Qingjie, LIU Dahai, YANG Liang. Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations[J]. 金属学报, 2024, 60(9): 1289-1298.
[7] CAI Xuanming, ZHANG Wei, FAN Zhiqiang, GAO Yubo, WANG Junyuan, ZHANG Zhujun. Damage Modes and Response Mechanisms of AlSi10Mg Porous Structures Under Different Loading Strain Rates[J]. 金属学报, 2024, 60(7): 857-868.
[8] ZHOU Yanyu, LI Jiangxu, LIU Chen, LAI Junwen, GAO Qiang, MA Hui, SUN Yan, CHEN Xingqiu. First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. 金属学报, 2024, 60(6): 837-847.
[9] SHEN Yang, GU Zhengman, WANG Cong. Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. 金属学报, 2024, 60(6): 802-816.
[10] YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. 金属学报, 2024, 60(3): 377-387.
[11] DONG Shihu, ZHANG Hongwei, LÜ Wenpeng, LEI Hong, WANG Qiang. Numerical Simulation on Macrosegregation in Fe-C Alloy Under Solidification Shrinkage Through Interface Tracking-Dynamic Mesh Technique[J]. 金属学报, 2024, 60(3): 388-404.
[12] . Simulation of the Formation Mechanism of Segregation Bands During IN718 Cladding on 316L Using Laser Powder Bed Fusion[J]. 金属学报, 0, (): 0-0.
[13] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[14] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[15] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
No Suggested Reading articles found!