|
|
Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing |
ZENG Li1, WANG Guilan1, ZHANG Haiou2( ), ZHAI Wenzheng2, ZHANG Yong3, ZHANG Mingbo1 |
1 State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 3 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
Cite this article:
ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing. Acta Metall Sin, 2024, 60(5): 681-690.
|
Abstract GH4169D is an age-strengthened nickel-based superalloy designed according to the improved GH4169 superalloy, which has become a remarkable candidate material for aero engines' hot-end components. However, large columnar grains and obvious anisotropy of mechanical properties often occur in this superalloy, which is fabricated by conventional wire and arc additive manufacturing (WAAM). To solve these problems, hybrid arc and micro-rolling additive manufacturing (HARAM) has been proposed. HARAM operates by combining WAAM with the rolling process. Herein, GH4169D superalloy samples were fabricated by WAAM and HARAM. Further, microstructures and mechanical properties of the samples under different heat treatments were investigated. Results show that with micro-rolling applied, large columnar grains became finer. In addition, the tensile strength of HARAM-ed GH4169D was significantly improved compared with WAAM-ed GH4169D (48 MPa in the X direction and 90 MPa in the Z direction), and the anisotropy of mechanical properties of HARAM-ed GH4169D was effectively eliminated. Homogenization plus solution plus double aging heat treatment effectively eliminated Laves segregation phase and induced the recrystallization of HARAM-ed GH4169D, leading to more finer and uniform grains than those without heat treatment, thereby, making the comprehensive properties optimal (the tensile strength and elongation were 1366 MPa and 25.0% in the X direction and 1354 MPa and 24.6% in the Z direction, respectively).
|
Received: 31 May 2022
|
|
Fund: National Key Research and Development Program of China(2019YFB1311103) |
Corresponding Authors:
ZHANG Haiou, professor, Tel: 13607104836, E-mail: zholab@hust.edu.cn
|
1 |
Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy[J]. Aeron. Manuf. Technol., 2018, 61(10): 49
|
|
王 迪, 钱泽宇, 窦文豪 等. 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术, 2018, 61(10): 49
|
2 |
Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. J. Alloys Compd., 2018, 767: 330
doi: 10.1016/j.jallcom.2018.07.087
|
3 |
Cedergren S, Olovsjö S, Sjöberg G, et al. The effects of grain size and feed rate on notch wear and burr formation in wrought alloy 718[J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1501
doi: 10.1007/s00170-012-4584-3
|
4 |
Wang M Q, Deng Q, Du J H, et al. Research progress of alloy ATI 718Plus in China[J]. Rare Met. Mater. Eng., 2016, 45: 3335
|
|
王民庆, 邓 群, 杜金辉 等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45: 3335
|
5 |
Xie J, Tian S G, Shang L J, et al. Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature[J]. Mater. Sci. Eng., 2014, A606: 304
|
6 |
Wang M Q, Du J H, Deng Q, et al. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Sci. Eng., 2015, A626: 382
|
7 |
Zhao W, Dong J X, Zhang M C, et al. High-temperature microstructure stability of GH4169, GH4169plus and GH4738 alloy[J]. Trans. Mater. Heat Treat., 2015, 36(S1): 1
|
|
赵 薇, 董建新, 张麦仓 等. GH4169、GH4169plus和GH4738高温合金组织稳定性[J]. 材料热处理学报, 2015, 36(S1): 1
|
8 |
Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China[J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
|
|
张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57: 1215
|
9 |
Song F Y, Zhang J, Guo H M, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. J. Mater. Eng., 2021, 49(1): 65
|
|
宋富阳, 张 剑, 郭会明 等. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65
doi: 10.11868/j.issn.1001-4381.2020.000396
|
10 |
Seidel A, Finaske T, Straubel A, et al. Additive manufacturing of powdery Ni-based superalloys Mar-M-247 and CM 247 LC in hybrid laser metal deposition[J]. Metall. Mater. Trans., 2018, 49A: 3812
|
11 |
Yuan Z W, Chang F C, Ma R, et al. Research progress of additive manufacturing of nickel-based superalloys[J]. Mater. Rep., 2022, 36: 206
|
|
袁战伟, 常逢春, 马 瑞 等. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36: 206
|
12 |
Lü Y H, Wang K B, Liu Y X, et al. The effect of heat treatment on the microstructure and mechanical property of Inconel 718 superalloy fabricated by plasma arc additive manufacturing[J]. Metall. Funct. Mater., 2018, 25(5): 46
|
|
吕耀辉, 王凯博, 刘玉欣 等. 热处理对等离子弧增材制造Inconel 718合金组织与性能的影响[J]. 金属功能材料, 2018, 25(5): 46
|
13 |
Jiang H L, Yao J K, Yin F L. Research status and application of wire arc additive manufacturing technology[J]. Hot Work. Technol., 2018, 47(18): 25
|
|
江宏亮, 姚巨坤, 殷凤良. 丝材电弧增材制造技术的研究现状与应用[J]. 热加工工艺, 2018, 47(18): 25
|
14 |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeron. Manuf. Technol., 2018, 61(3): 74
|
|
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74
|
15 |
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Mater. Sci. Technol., 2018, 34: 895
doi: 10.1080/02670836.2018.1455012
|
16 |
Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad[J]. Aeros. Manuf. Technol., 2015, (2): 57
|
|
田彩兰, 陈济轮, 董 鹏 等. 国外电弧增材制造技术的研究现状及展望[J]. 航天制造技术, 2015, (2): 57
|
17 |
Seow C E, Coules H E, Wu G Y, et al. Wire + arc additively manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties[J]. Mater. Des., 2019, 183: 108157
doi: 10.1016/j.matdes.2019.108157
|
18 |
Zhang H O, Wang X P, Wang G L, et al. Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J]. Rapid Prototyping J., 2013, 19: 387
doi: 10.1108/RPJ-01-2012-0006
|
19 |
Wang G L, Fu Y H, Liang L Y, et al. New hybrid additive manufacturing method for forming high strength parts by weld-rolling[J]. Hot Work. Technol., 2015, 44(13): 24
|
|
王桂兰, 符友恒, 梁立业 等. 电弧微铸轧复合增材新方法制造高强度钢零件[J]. 热加工工艺, 2015, 44(13): 24
|
20 |
Zickler G A, Schnitzer R, Radis R, et al. Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™[J]. Mater. Sci. Eng., 2009, A523: 295
|
21 |
Zhang J B, Li J A, Peng Y Y, et al. Reviews on the study of microstructure and properties of ATI 718Plus superalloy[J]. Mater. Rep., 2022, 36(4): 149
|
|
仉建波, 李京桉, 彭远祎 等. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 149
|
22 |
Kumari G, Boehlert C, Sankaran S, et al. The effects of solutionizing temperature on the microstructure of Allvac 718Plus[J]. J. Mater. Eng. Perform., 2020, 29: 3523
doi: 10.1007/s11665-020-04687-z
|
23 |
Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Mater., 2019, 164: 413
doi: 10.1016/j.actamat.2018.10.032
|
24 |
Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process[J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2733
doi: 10.1007/s00170-016-9901-9
|
25 |
Ming X L, Chen J, Tan H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chin. J. Lasers, 2015, 42(4): 1
|
|
明宪良, 陈 静, 谭 华 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 1
|
26 |
Yang G Y, Yang P W, Liu N, et al. Microstructure and crystal orientation of pure tungsten fabricated by selective electron beam melting[J]. Rare Met. Mater. Eng., 2019, 48: 2580
|
|
杨广宇, 杨鹏伟, 刘 楠 等. 电子束选区熔化成形纯钨的显微组织与晶体取向[J]. 稀有金属材料与工程, 2019, 48: 2580
|
27 |
Hong C M, Dong J X, Zhang Y F, et al. A study on microstructural characteristics during hot processing of GH864 superalloy[J]. Rare Met. Mater. Eng., 2009, 38: 510
|
|
洪成淼, 董建新, 张玉峰 等. GH864合金热加工过程中组织特征研究[J]. 稀有金属材料与工程, 2009, 38: 510
|
28 |
Xie B C, Zhang B Y, Yu H, et al. Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy[J]. Mater. Sci. Eng., 2020, A784: 139334
|
29 |
Asala G, Khan A K, Andersson J, et al. Microstructural analyses of ATI 718Plus® produced by wire-arc additive manufacturing process[J]. Metall. Mater. Trans., 2017, 48A: 4211
|
30 |
Wang K B, Liu Y X, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. J. Alloys Compd., 2020, 819: 152936
doi: 10.1016/j.jallcom.2019.152936
|
31 |
Lv X D, Wen B, Du J H. Effects of heat treatment on microstructure and mechanical properties of selective laser melting IN718[J]. Rare Met. Mater. Eng., 2019, 48: 1386
|
32 |
Li Z G, Zhang L T, Sun N R, et al. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy[J]. Mater. Charact., 2014, 95: 299
doi: 10.1016/j.matchar.2014.07.013
|
33 |
Randle V, Owen G. Mechanisms of grain boundary engineering[J]. Acta Mater., 2006, 54: 1777
doi: 10.1016/j.actamat.2005.11.046
|
34 |
Viskari L, Cao Y, Norell M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2011, A528: 2570
|
35 |
Pan X L, Yu H Y, Tu G F, et al. Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2402
doi: 10.1016/S1003-6326(11)61027-3
|
36 |
Tang L T, Zhang H Y, Guo Q Y, et al. The precipitation of η phase during the solution treatments of Allvac 718Plus[J]. Mater. Charact., 2021, 176: 111142
doi: 10.1016/j.matchar.2021.111142
|
37 |
Oguntuase O, Ojo O A, Beddoes J. Influence of post-deposition heat treatments on the microstructure and mechanical properties of wire-arc additively manufactured ATI 718Plus[J]. Metall. Mater. Trans., 2020, 51A: 1846
|
38 |
Wang M Q, Deng Q, Du J H, et al. The effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Trans., 2015, 56: 635
doi: 10.2320/matertrans.M2014378
|
39 |
Hosseini S A, Abbasi S M, Madar K Z, et al. The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus[J]. Mater. Chem. Phys., 2018, 211: 302
doi: 10.1016/j.matchemphys.2018.01.076
|
40 |
Ahmadi M R, Povoden-Karadeniz E, Whitmore L, et al. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation[J]. Mater. Sci. Eng., 2014, A608: 114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|