Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China 2 State Key Laboratory of Super Hard Materials, Jilin University, Changchun 130012, China 3 International Center of Future Science, Jilin University, Changchun 130012, China
Cite this article:
TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling. Acta Metall Sin, 2024, 60(4): 473-484.
Al-Mg series alloys are highly desirable for structural applications, owing to their high specific strength, good formability, and excellent corrosion resistance. However, high-strength Al-Mg alloys prepared via severe plastic deformation generally exhibit poor thermal stability, which is caused by the high-density grain boundaries (GBs). Achieving simultaneous high strength and thermal stability in binary Al-Mg alloys remains a challenge. In this study, Al-9Mg alloys with a combination of high strength (~597 MPa), decent elongation (~7.7%), and enhanced thermal stability were developed via cryogenic high-reduction hard-plate rolling (CHR-HPR). The effects of solute Mg content on the microstructure evolution and mechanical properties of CHR-HPR Al-Mg alloys were systematically investigated using EBSD, TEM, microhardness measurements, and tensile tests. The high yield strength is derived from high-density dislocations and low-angle GBs promoted via the high content of solute Mg atoms and low deformation temperature. In addition to the positive roles of Mg atoms and low deformation temperature on work-hardening ability, the simultaneous improvement in the ultimate tensile strength and ductility of CHR-HPR Al-Mg alloys with increasing solute Mg content is partially attributed to the enhanced work hardening induced via the dynamic strain aging. Furthermore, the recrystallization temperature of the CHR-HPR Al-Mg alloys gradually increased with increasing solute Mg content, and the recrystallization temperature of CHR-HPR Al-9Mg could reach 400oC. The enhanced thermal stability of CHR-HPR Al-9Mg alloy is due to the high content Mg solute atoms, which strongly retard recovery and recrystallization by dragging dislocations and pinning GBs.
Fund: National Natural Science Foundation of China(51922048);National Natural Science Foundation of China(51625402);National Natural Science Foundation of China(51790483)
Corresponding Authors:
ZHA Min, professor, Tel:(0431)85094699, E-mail: minzha@jlu.edu.cn;
WANG Huiyuan, professor, Tel:(0431)85095415, E-mail: wanghuiyuan@jlu.edu.cn
Table 1 Chemical compositions of the investigated Al-Mg alloys
Fig.1 XRD spectra of the as-extruded and cryogenic high-reduction hard-plate rolling (CHR-HPR) Al-Mg alloys (Dotted vertical lines represent the theoretical diffraction peaks of pure Al)
Material
State
a
nm
Δa
nm
ΔMg
mass fraction / %
Pure Al[8]
0.40413
Al-1Mg
As-extruded
0.40567 ± 0.00006
0.00025
0.48
CHR-HPR
0.40542 ± 0.00001
Al-5Mg
As-extruded
0.40776 ± 0.00007
0.00035
0.68
CHR-HPR
0.40741 ± 0.00001
Al-9Mg
As-extruded
0.40988 ± 0.00005
0.00020
0.38
CHR-HPR
0.40968 ± 0.00001
Table 2 Lattice parameters and the losses of Mg concentration in solid solution determined from XRD spectra of the pure Al[8], as-extruded, and CHR-HPR Al-Mg alloys
Fig.2 EBSD analyses of CHR-HPR Al-1Mg (a, d), CHR-HPR Al-5Mg (b, e), and CHR-HPR Al-9Mg (c, f) alloys (High-angle grain boundaries (HAGBs) are defined by misorientation angle (θ) > 15°, and low-angle grain boundaries (LAGBs) are defined by 2° < θ < 15°, respectively. TD—transverse direction, RD—rolling direction) (a-c) inverse pole figure maps (d-f) kernel average misorientation (KAM) images
Fig.3 TEM images of the CHR-HPR Al-1Mg (a-c), CHR-HPR Al-5Mg (d-f), and CHR-HPR Al-9Mg (g-i) alloys (Insets in Figs.3c, f, and i are the corresponding selected area electron diffraction patterns of the matrix)
Fig.4 Tensile properties of CHR-HPR Al-Mg alloys (a) engineering stress-strain curves (b) true stress-strain curves (Inset in Fig.4b shows the locally magnified section) (c) work hardening rate as a function of true strain
Fig.5 Microhardness evolution of CHR-HPR Al-Mg alloys annealed at different temperatures for 30 min
Fig.6 Engineering stress-strain curves of CHR-HPR Al-Mg alloys annealed at 275oC (a), 300oC (b), 350oC (c), and 400oC (d) for 30 min
Fig.7 EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 275oC for 30 min (ND—normal direction) (a-c) inverse pole figure maps (d-f) different types of grains
Fig.8 EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 300oC for 30 min (a-c) inverse pole figure maps (d-f) different types of grains
Fig.9 EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 350oC for 30 min (a-c) inverse pole figure maps (Insets in Figs.9a and b are the corresponding grain size distribution charts. dave— average grain size) (d-f) different types of grains
Fig.10 EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 400oC for 30 min (a-c) inverse pole figure maps (Insets in Figs.10a-c are the corresponding grain size distribution charts) (d-f) different types of grains
Fig.11 Microstructure evolution models of CHR-HPR Al-1Mg (ai-ei), Al-5Mg (aii-eii), and Al-9Mg (aiii-eiii) alloys before (ai-aiii) and after annealing at 275oC (bi-biii), 300oC (ci-ciii), 350oC (di-diii), and 400oC (ei-eiii) (Red lines represent deformation bands and green hexagons represent recrystallized grains, while black and gray curve lines represent HAGBs and LAGBs, respectively)
1
Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy[J]. Int. J. Plast., 2021, 146: 103108
doi: 10.1016/j.ijplas.2021.103108
2
Tang Y P, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition[J]. Acta Mater., 2017, 131: 57
doi: 10.1016/j.actamat.2017.04.002
3
Yuan T, Zhao X H, Jiang X Q, et al. Mechanism of grain refinement of pulse current assisted plasma arc welded Al-Mg alloy[J]. Acta Metall. Sin., 2024, 60: 323
doi: 10.11900/0412.1961.2022.00036
Zha M, Zhang H M, Meng X T, et al. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation[J]. J. Mater. Sci. Technol., 2021, 89: 141
doi: 10.1016/j.jmst.2021.01.086
5
Jang D H, Park Y B, Kim W J. Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13 wt%) after cold rolling[J]. Mater. Sci. Eng., 2019, A744: 36
6
Morishige T, Hirata T, Uesugi T, et al. Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing[J]. Scr. Mater., 2011, 64: 355
doi: 10.1016/j.scriptamat.2010.10.033
7
Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
Zha M, Li Y J, Mathiesen R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
doi: 10.1016/j.actamat.2014.10.025
9
Liu Y, Liu M P, Chen X F, et al. Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion[J]. Scr. Mater., 2019, 159: 137
10
Ruppert M, Schunk C, Hausmann D, et al. Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding[J]. Acta Mater., 2016, 103: 643
doi: 10.1016/j.actamat.2015.11.009
11
Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd[J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
12
Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Mater., 2010, 58: 5262
doi: 10.1016/j.actamat.2010.05.056
13
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
14
Zha M, Li Y J, Mathiesen R H, et al. High ductility bulk nanostructured Al-Mg binary alloy processed by equal channel angular pressing and inter-pass annealing[J]. Scr. Mater., 2015, 105: 22
doi: 10.1016/j.scriptamat.2015.04.018
15
Krymskiy S, Sitdikov O, Avtokratova E, et al. 2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 14
doi: 10.1016/S1003-6326(19)65176-9
16
Kumar V, Kumar D. Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy[J]. Mater. Sci. Eng., 2017, A691: 211
17
Zhang H M, Zha M, Jia H L, et al. Influences of the Al3Sc particle content on the evolution of bimodal grain structure and mechanical properties of Al-Mg-Sc alloys processed by hard-plate rolling[J]. Mater. Sci. Eng., 2021, A802: 140451
18
Zha M, Meng X T, Zhang H M, et al. High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route[J]. J. Alloys Compd., 2017, 728: 872
doi: 10.1016/j.jallcom.2017.09.017
19
Zha M, Liang J W, Xing H, et al. Spheroiding and refining of coarse CaMgSn phase in Mg-Al-Sn-Ca alloys for simultaneously improved strength and ductility via sub-rapid solidification and controlled rolling[J]. Mater. Sci. Eng., 2022, A834: 142598
20
Li Y K, Zha M, Jia H L, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles[J]. J. Magnes. Alloy., 2021, 9: 1556
doi: 10.1016/j.jma.2021.01.008
21
Li Y K, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 88: 215
doi: 10.1016/j.jmst.2021.01.050
22
Jin Z Z, Zha M, Jia H L, et al. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 81: 219
doi: 10.1016/j.jmst.2020.11.069
23
Zhang H, Zha M, Tian T, et al. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg-Al-Zn alloys processed by hard-plate rolling (HPR)[J]. Mater. Sci. Eng., 2021, A808: 140920
24
Zhou F, Liao X Z, Zhu Y T, et al. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling[J]. Acta Mater., 2003, 51: 2777
doi: 10.1016/S1359-6454(03)00083-1
25
Alyani A, Kazeminezhad M. Annealing behavior of aluminum after low-temperature severe plastic deformation[J]. Mater. Sci. Eng., 2021, A824: 141810
26
Dhal A, Panigrahi S K, Shunmugam M S. Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys[J]. J. Alloys Compd., 2017, 726: 1205
doi: 10.1016/j.jallcom.2017.08.062
27
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
Hasegawa H, Komura S, Utsunomiya A, et al. Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions[J]. Mater. Sci. Eng., 1999, A265: 188
29
Hayes J S, Keyte R, Prangnell P B. Effect of grain size on tensile behaviour of a submicron grained Al-3wt%-Mg alloy produced by severe deformation[J]. Mater. Sci. Technol., 2000, 16: 1259
doi: 10.1179/026708300101507479
30
Zha M, Meng X T, Yu Z Y, et al. Enhancing thermal stability of binary Al-Mg alloys by tailoring grain orientations using a high solute Mg content[J]. Metall. Mater. Trans., 2019, 50A: 5264
31
Jin S B, Tao N R, Marthinsen K, et al. Deformation of an Al-7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation[J]. Mater. Sci. Eng., 2015, A628: 160
32
Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment[J]. Acta Metall. Sin., 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
Kreyca J, Kozeschnik E. State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions[J]. Int. J. Plast., 2018, 103: 67
doi: 10.1016/j.ijplas.2018.01.001
34
Fu S H, Cheng T, Zhang Q C, et al. Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin-Le Chatelier effect[J]. Acta Mater., 2012, 60: 6650
doi: 10.1016/j.actamat.2012.08.035
35
Jobba M, Mishra R K, Niewczas M. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. Int. J. Plast., 2015, 65: 43
doi: 10.1016/j.ijplas.2014.08.006
36
Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
37
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy[J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
Valiev R Z, Enikeev N A, Murashkin M Y, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation[J]. Scr. Mater., 2010, 63: 949
doi: 10.1016/j.scriptamat.2010.07.014
40
Liu G, Zhang P, Yang C, et al. Aluminum alloys: Solute atom clusters and their strengthening[J]. Acta Metall. Sin., 2021, 57: 1484
doi: 10.11900/0412.1961.2021.00301
Chen Y J, Roven H J, Gireesh S S, et al. Quantitative study of grain refinement in Al-Mg alloy processed by equal channel angular pressing at cryogenic temperature[J]. Mater. Lett., 2011, 65: 3472
doi: 10.1016/j.matlet.2011.07.067