Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 443-452    DOI: 10.11900/0412.1961.2022.00498
Research paper Current Issue | Archive | Adv Search |
Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio
ZHANG Guangying1, LI Yan2,3, HUANG Liying4, DING Wei1()
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
2 School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 Key Laboratory of Integrated Exploitation of Bayan-Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
4 Department of Mechanical and Electrical Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
Cite this article: 

ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio. Acta Metall Sin, 2024, 60(4): 443-452.

Download:  HTML  PDF(2854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Researches have focused on the development of lightweight and high-performance steel materials to ensure automobile safety. Medium manganese steel is a potential candidate owing to its excellent mechanical properties and low production cost. However, the problem of plastic instability (Lüders strain, Portevin-Le Chatelier effect) is one of the main factors restricting the development of medium manganese steel. Therefore, resolving the plastic instability of medium manganese steel is a prerequisite for its development and hence to ensure the benefits of its mechanical qualities. Many studies have found that the stability of retained austenite is directly related to the plastic instability of medium manganese steel. In this work, cold rolled low-carbon medium manganese steel is selected, and multi-stable retained austenite is obtained by designing pretreatment and critical annealing process. The phase transformation of the retained austenite with different stability in each stage of the tensile process and its influence on the mechanical properties are studied. The results show that the microstructure containing pearlite + ferrite + martensite is obtained after pretreatment of medium manganese steel. After annealing, pearlite transformed into filmy retained austenite and ferrite phase; while martensite transformed into blocky retained austenite. Mn content in the filmy retained austenite is higher than that in the blocky retained austenite, making the filmy retained austenite more stable than the blocky one. The blocky retained austenite has poor stability, and phase transformation occurs at the initial stage of plastic deformation, eliminating Lüders strain. In contrast, the filmy retained austenite has high stability, and phase transformation occurs in the middle and late deformation, contributing toward its high strength and plasticity. The specimens containing double-stable retained austenite not only maintain the tensile strength (> 1000 MPa) and high fracture elongations (> 30%), but also have the characteristics of continuous yield and high strength yield ratio.

Key words:  medium manganese steel      retained austenite      plastic instability      mechanical property     
Received:  19 October 2022     
ZTFLH:  TG142.1  
Fund: Inner Mongolia Natural Science Foundation(2020LH05026);Science and Technology Project of Hebei Education Department(ZD2022034)
Corresponding Authors:  DING Wei, associate professor, Tel: 15034713948, E-mail: adingwei@126.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00498     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/443

Fig.1  Schematic of heat treatment process (A1—start temperature of pearlite transformed to austenite, A3—temperature of all ferrite transformed to austenite, A—austenite, F—ferrite, P—pearlite, M—martensite, RA—retained austenite, RA+—Mn-rich RA, RA-—Mn-poor RA)
Fig.2  SEM images of A730-3 (a, b) and PA730-5 (c, d) samples before (a, c) and after (b, d) annealing, and schematics of austenite transformation of PA730-5 sample (CEME—cementite) (e)
Fig.3  RA grain size distributions of A730-3 (a) and PA730-5 (b) samples, and average grain sizes of each phase in the microstructure (c)
Fig.4  TEM images and SAED patterns (insets) (a, d), and corresponding EDS element mappings (b, e) and EDS point concentrations (c, f) of Mn element of blocky (a-c) and film (d-f) RA in PA730-5 sample after annealing (Red dots in Figs.4a and d show EDS scanning points)
Fig.5  Schematic of sample location (a) and corresponding SEM images (b-d) away from fracture successively in PA730-5 sample
Fig.6  XRD spectra of A730-3 and PA730-5 samples before (a) and after (b) tensile fracture
Fig.7  Engineering stress-strain curves of A730-3 and PA730-5 samples (PLC—Portevin-Le Chatelier)
Sample

YS

MPa

UTS

MPa

TE

%

UTS / YS

UTS × TE

GPa·%

A730-39221041431.1244.76
PA730-56521025341.5734.85
Table 1  Mechanical properties of A730-3 and PA730-5 samples after annealing
Fig.8  Work hardening index curves of A730-3 and PA730-5 samples
Fig.9  TEM image of PA730-5 sample after fracture (a) and schematic of motion of Lüders band (b) (VL—Lüders band moving rate, VC—tensile rate)
1 Sun Y, Zheng Q Y, Hu B J, et al. Mechanism of dynamic strain-induced ferrite transformation in a 3Mn-0.2C medium Mn steel[J]. Acta Metall. Sin., 2022, 58: 649
doi: 10.11900/0412.1961.2021.00192
孙 毅, 郑沁园, 胡宝佳 等. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58: 649
2 Li Y, Wang R X, Wang B F, et al. Influence of silicon addition on intercritical annealing process and tensile properties of medium Mn steel[J]. J. Mater. Sci., 2021, 56: 1783
doi: 10.1007/s10853-020-05330-x
3 Zhang Y P, Li D Z, Yan Z J, et al. Effect of intercritical annealing process on microstructure and mechanical properties of cold-rolled medium manganese steel[J]. Trans. Mater. Heat Treat., 2021, 42(5):72
张宇鹏, 李大赵, 闫志杰 等. 临界退火工艺对冷轧中锰钢微观组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(5): 72
doi: 10.13289/j.issn.1009-6264.2020-0388
4 Pan H J, Yu W W, Wei C F, et al. Enhanced hydrogen embrittlement resistance of medium Mn steel by tailoring retained austenite morphology[J]. J. Mater. Eng. Perform., 2023, 32: 712
doi: 10.1007/s11665-022-07118-3
5 Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J]. Acta Metall. Sin., 2018, 54: 859
doi: 10.11900/0412.1961.2017.00315
阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54: 859
6 Ding W, Jiang H T, Tang D, et al. Mechanical property and retained austenite of low-Si TRIP steel[J]. J. Mater. Eng., 2010, (4): 72
定 巍, 江海涛, 唐 荻 等. 低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J]. 材料工程, 2010, (4): 72
7 Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning processing to medium Mn steel[J]. Metall. Mater. Trans., 2015, 46A: 27
8 Liang X K, Fu H, Cui M, et al. Effect of intercritical tempering temperature on microstructure evolution and mechanical properties of high strength and toughness medium manganese steel[J]. Materials, 2022, 15: 2162
doi: 10.3390/ma15062162
9 Mishra G, Chandan A K. Effect of cold deformation extent and ART annealing duration on the microstructure and mechanical properties of a medium manganese steel[J]. Mater. Chem. Phys., 2021, 271: 124940
doi: 10.1016/j.matchemphys.2021.124940
10 Ma Y, Song W W, Zhou S X, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel[J]. Metals, 2018, 8: 357
doi: 10.3390/met8050357
11 Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review[J] Chin. J. Eng., 2020, 42: 48
胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望[J]. 工程科学学报, 2020, 42: 48
12 Zhang C, Xiong Z P, Yang D Z, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J]. Acta Metall. Sin., 2024, 60: 69
doi: 10.11900/0412.1961.2022.00315
张 超, 熊志平, 杨德振 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 69
13 An X L, Zhang R M, Wu Y X, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels[J]. Mater. Sci. Eng., 2022, A831: 142286
14 Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement[J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
15 Li Z, Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels[J]. ISIJ Int., 2006, 46: 121
doi: 10.2355/isijinternational.46.121
16 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
17 Liu C Q. Study on microstructure, mechanical property control and austenite stability of high strength and high plasticity medium manganese steel[D]. Wuhan: Wuhan University of Science and Technology, 2020
刘春泉. 高强高塑性中锰钢组织性能调控及奥氏体稳定性研究[D]. 武汉: 武汉科技大学, 2020
18 Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
19 Tsuchiyama T, Sakamoto T, Tanaka S, et al. Control of core-shell type second phase formed via interrupted quenching and intercritical annealing in a medium manganese steel[J]. ISIJ Int., 2020, 60: 2954
doi: 10.2355/isijinternational.ISIJINT-2020-164
20 Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
21 Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
22 Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031
赵晓丽, 张永健, 邵成伟 等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031
doi: 10.11900/0412.1961.2017.00435
23 Li Y, Du J C, D W, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of medium Mn TRIP steel[J]. J. Iron Steel Res., 2018, 30: 185
李 岩, 杜敬超, 定 巍 等. 临界退火温度对中锰TRIP钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30: 185
24 Zhang N. Study on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steel[D] Baotou: Inner Mongolia University of Science & Technology, 2021
张 楠. Al微合金化中锰钢力学性能研究及退火前原始组织控制[D]. 包头: 内蒙古科技大学, 2021
25 Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation[J]. Mater. Lett., 2020, 258: 126804
doi: 10.1016/j.matlet.2019.126804
26 Ye Q Z, Han G, Xu J P, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel[J]. Mater. Sci. Eng., 2022, A831: 142244
27 Liu C Q, Peng Q C, Xue Z L, et al. Microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn TRIP steels[J]. Materials, 2018, 11: 2242
doi: 10.3390/ma11112242
28 Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility[J]. Chin. J. Mater. Res., 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
张喜亮, 侯华峰, 刘 涛 等. 一种新型高强塑积异质冷轧中锰钢的力学性能[J]. 材料研究学报, 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
29 Tian Y Q, Bi W Q, Pan H B, et al. Effect of carbide evolution on Lüders behavior of cold rolled ART 0.1C-7Mn steel[J]. J. Iron Steel Res., 2020, 32: 505
田亚强, 毕文强, 潘红波 等. 碳化物演变对冷轧ART0.1C-7Mn钢Lüders行为影响[J]. 钢铁研究学报, 2020, 32: 505
30 Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Mater., 2017, 124: 17
doi: 10.1016/j.actamat.2016.10.069
31 Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
32 Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
33 Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Lüder strain and retained austenite in TRIP-assisted cold rolled steel sheets[J]. Mater. Sci. Eng., 2007, A447: 174
34 Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel[J]. Scr. Mater., 2013, 68: 933
doi: 10.1016/j.scriptamat.2013.02.026
35 Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
doi: 10.2320/matertrans.45.2245
36 Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
doi: 10.2355/isijinternational.53.1224
37 Zhou T P. Study on metastable austenite control and mechanical properties of medium manganese steels with high strength and ductility[D]. Chongqing: Chongqing University, 2020
周天鹏. 高强塑性中锰钢亚稳奥氏体调控与力学性能研究[D]. 重庆: 重庆大学, 2020
38 Ma J W. A study on the microscopic/macroscopic mechanisms and the weakening approaches of the plastic instability phenomena in a 7MnCA medium Mn steel[D]. Shanghai: Shanghai Jiao Tong University, 2020
马佳伟. 中锰钢7MnCA塑性失稳行为的宏微观力学机制及弱化方法研究[D]. 上海: 上海交通大学, 2020
39 Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions[J]. Mater. Sci. Eng., 2018, A729: 496
40 Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Mater., 2019, 174: 131
doi: 10.1016/j.actamat.2019.05.043
[1] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[2] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[3] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[4] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[5] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[6] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[7] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[8] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!