Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 434-442    DOI: 10.11900/0412.1961.2022.00496
Research paper Current Issue | Archive | Adv Search |
Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel
JIANG Haowen1, PENG Wei1,2(), FAN Zengwei1, WANG Yangxin1, LIU Tengshi1,2, DONG Han1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China
Cite this article: 

JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel. Acta Metall Sin, 2024, 60(4): 434-442.

Download:  HTML  PDF(3255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austenitic stainless steels have wide applications due to their excellent properties, such as high strength, corrosion resistance, and superior workability. 304 stainless steel (304SS) is one of the most popular austenitic stainless steels. With a growing emphasis on healthcare, the antibacterial property of the materials becomes increasingly important. Ag is added to type 304 stainless steels to obtain an expected antibacterial property and reduce the occurrence of bacterial contamination. With the development of technology, previous research on Ag-bearing stainless steel was mainly concerned on its antibacterial properties, mechanical properties, and corrosion resistance. However, the microstructures of Ag-bearing stainless steels, especially the occurrence and distribution of Ag, have not been studied intensively. The present work studies the effects of Ag content on the microstructure, texture, and mechanical properties of austenitic stainless steel using OM, SEM, secondary ion mass spectrometer (SIMS), EBSD, and tensile test. SIMS analysis shows that Ag exists in austenitic stainless steel mainly in the form of Ag, Ag x S, and Ag x N compounds, which are mainly distributed at the grain boundaries and less within the grain. During recrystallization, the nucleation rate increases by the stimulation of coarse Ag, Ag x S, and Ag x N compound particles, while the grain growth is hindered by fine Ag, Ag x S, and Ag x N compound particles. Hence, the average grain size of 304, 304Ag-1, and 304Ag-2 stainless steel changes from (126 ± 3) μm to (47 ± 4) μm. The EBSD results show that the maximum pole densities of 304, 304Ag-1, and 304Ag-2 stainless steel samples are 3.24, 2.71, and 2.22, respectively, indicating that Ag can reduce the anisotropy of austenitic stainless steel. The yield strength and tensile strength of austenitic stainless steels decrease with the increase of Ag content, and the elongation increases with the increase of Ag content. Furthermore, strength and elongation consistency of Ag-bearing 304 stainless steel are much better compared to that of 304 steel at the angles of 0°, 45°, and 90° to rolling direction. The phenomenon of high Schmid factor grains surrounding low Schmid factor occurs in austenitic stainless steel, and the average Schmid factor of grains in {111} <110> slip system increases with the increase of Ag content, and the proportion of grains in “soft orientation” increases. Under the given loading stress, Ag-bearing austenitic stainless steel is more prone to deformation.

Key words:  Ag-bearing austenitic stainless steel      occurrence trace of Ag      mechanical property      recrystallization      grain orientation     
Received:  08 October 2022     
ZTFLH:  TG142  
Fund: Shanghai Military Civilian Integration Development Special Fund(2020-jmrh1-kj31)
Corresponding Authors:  PENG Wei, associate professor, Tel: 17621133366, E-mall: PengWei1688@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00496     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/434

SampleCSiMnPSCrNiCuMoAgFe
3040.0560.4041.140.03830.009417.478.090.02890.001Bal.
304Ag-10.0390.1791.230.02000.010018.269.370.01980.0090.034Bal.
304Ag-20.0390.1791.330.01980.007418.069.590.01990.0040.062Bal.
Table 1  Chemical compositions of stainless steels with different Ag contents
Fig.1  Schematic of tensile sample (unit: mm)
Fig.2  XRD spectra of stainless steels with different Ag contents
Fig.3  OM images of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (Arrows show spherical particles)
Fig.4  SEM images of 304Ag-1 (a) and 304Ag-2 (b) stainless steels (Inset shows the high magnified image)
PointCSiTiCrMnFeNiAg
A7.590.300.1917.571.3757.3610.085.54
B5.560.301.7718.591.4661.3510.97-
C7.610.320.3017.601.2756.2410.046.62
D7.590.170.5216.221.1154.727.9711.70
Table 2  EDS results of particles A-D in Fig.4
Fig.5  SEM image and corresponding EDS mappings of 304Ag-2 stainless steel
Fig.6  Secondary ion mass spectrometry (SIMS) of Ag (a), Ag x N (b), and Ag x S (c) particles in 304Ag-2 stainless steel (M / Z—mass-to-charge ratio)
Fig.7  Two-dimensional element distributions in SIMS of 304Ag-1 (a) and 304Ag-2 (b) stainless steels
Fig.8  Engineering stress-strain curves of stainless steels with different Ag contents in different directions
(a) 0°, rolling direction (RD)
(b) 45°
(c) 90°, transeverse direction (TD)
DirectionMaterialRm / MPaRp0.2 / MPaA / %
0° (RD)30473324177
304Ag-162323380
304Ag-259222181
45°30469022373
304Ag-161122380
304Ag-258521981
90° (TD)30470323580
304Ag-161523081
304Ag-259822381
Table 3  Mechanical properties of stainless steels with different Ag contents in different directions
Fig.9  Inverse pole figures of RD, TD, and ND of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (ND—normal direction)
Fig.10  Schmid factor distributions of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉 slip systems
Fig.11  Frequency distribution histograms of Schmid factor of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉slip systems
1 Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
2 Yi R, Ye F, Zhang G G, et al. Current status of research on anti-bacterial stainless steels[J]. Electroplat. Finish., 2015, 34: 635
易 蓉, 叶 峰, 张果戈 等. 抗菌不锈钢研究现状[J]. 电镀与涂饰, 2015, 34: 635
3 Ma T, Li Y G. Development situation and application prospect of antibacterial stainless steels[J]. Mater. Rep., 2015, 29(13): 98
马 涛, 李运刚. 抗菌不锈钢的发展研究现状及展望[J]. 材料导报, 2015, 29(13): 98
4 Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, A675: 243
5 Xi T, Yang C G, Shahzad M B, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Mater. Des., 2015, 87: 303
doi: 10.1016/j.matdes.2015.08.011
6 Yuan Z, Xi T, Yang C G, et al. Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel[J]. Mater. Lett., 2020, 272: 127815
doi: 10.1016/j.matlet.2020.127815
7 Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J]. Int. Biodeterior. Biodegrad., 2016, 110: 199
doi: 10.1016/j.ibiod.2016.03.026
8 Li M J, Nan L, Xu D K, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. J. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1016/j.jmst.2014.11.016
9 Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Tech. Rep., 2002, 46: 37
10 Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2016, C63: 376
11 Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel[J]. Appl. Surf. Sci., 2010, 256: 3642
doi: 10.1016/j.apsusc.2010.01.001
12 Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 539
doi: 10.1007/s40195-014-0085-8
13 Mo J Q, Feng G H, Zhang W, et al. Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel[J]. China Metall., 2022, 32(8): 62
莫金强, 冯光宏, 张 威 等. Ag对抗菌不锈钢组织性能的影响及其析出行为[J]. 中国冶金, 2022, 32(8): 62
14 Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27: 449
doi: 10.1080/08927014.2011.582642
15 Morrison W B. Influence of silver on structure and properties of low-carbon steel[J] Mater. Sci. Technol., 1985, 1: 954
doi: 10.1179/mst.1985.1.11.954
16 Chiang W C, Tseng I S, Møller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Mater. Chem. Phys., 2010, 119: 123
doi: 10.1016/j.matchemphys.2009.08.035
17 Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour[J]. Virtual Phys. Prototy., 2018, 13: 146
doi: 10.1080/17452759.2018.1458991
18 Лянкишев H N, translated by Guo Q W. Manual of Phase Diagrams for Metal Binary Systems[M]. Beijing: Chemical Industry Press, 2009: 15
Лянкишев H N著, 郭青蔚 译. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009: 15
19 Swartzendruber L J. The Ag-Fe (silver-iron) system[J]. Bull. Alloy Phase Diagrams, 1984, 5: 560
doi: 10.1007/BF02868316
20 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 396
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版, 上海: 上海交通大学出版社, 2010: 396
21 Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D]. Beijing: Tsinghua University, 2014
轩 阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学, 2014
22 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 408
23 Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
doi: 10.1016/j.scriptamat.2009.09.032
24 Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture[J]. Acta Mater., 1997, 45: 4593
doi: 10.1016/S1359-6454(97)00157-2
25 Peng X Y, Guo M X, Wang X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169
彭祥阳, 郭明星, 汪小锋 等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169
doi: 10.11900/0412.1961.2014.00276
26 Lu J, Zeng X Q, Ding W J. The Hall-Petch relationship[J]. Light Met., 2008, (8): 59
路 君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, (8): 59
27 Gu Y F, Ro Y, Harada H. Tensile properties of chromium alloyed with silver[J]. Metall. Mater. Trans., 2004, 35A: 3329
28 Yu Y N. Foundation of Materials Science[M]. 2nd Ed., Beijing: Higher Education Press, 2012: 256
余永宁. 材料科学基础[M]. 第二版, 北京: 高等教育出版社, 2012: 256
29 Li Y R, Yun Z Z. Materials Physics Introduction[M]. Beijing: Tsinghua University Press, 2001: 312
李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001: 312
30 Zhang Y. Effect of heat treatment on the growth behavior of second phase particles in deformed zirconium alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017
张 瑶. 热处理条件对形变锆合金第二相粒子长大行为的影响[D]. 上海: 上海交通大学, 2017
31 Du Y Z. Study on Microstructures and mechanical properties of Mg-Zn alloys microaaloyed with Ca and Ce/La[D]. Harbin: Harbin Institute of Technology, 2015
杜玉洲. Ca和Ce/La微合金化Mg-Zn合金显微组织及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
32 Chen L W, Li P A, Liu Z, et al. Effects of trace elements on properties and microstructure of electronic aluminum foil billet[J]. J. Kunming Univ. Sci. Technol. (Nat. Sci.), 2017, 42(1): 14
陈亮维, 李平安, 刘 状 等. 微量合金元素对电子铝箔坯料组织与性能的影响[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 14
33 Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy[J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35: 881
34 Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles[J]. Mater. Sci. Eng., 2012, A531: 2
[1] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[2] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[3] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[4] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[5] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[6] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[7] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[8] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!