Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel
JIANG Haowen1, PENG Wei1,2(), FAN Zengwei1, WANG Yangxin1, LIU Tengshi1,2, DONG Han1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China
Cite this article:
JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel. Acta Metall Sin, 2024, 60(4): 434-442.
Austenitic stainless steels have wide applications due to their excellent properties, such as high strength, corrosion resistance, and superior workability. 304 stainless steel (304SS) is one of the most popular austenitic stainless steels. With a growing emphasis on healthcare, the antibacterial property of the materials becomes increasingly important. Ag is added to type 304 stainless steels to obtain an expected antibacterial property and reduce the occurrence of bacterial contamination. With the development of technology, previous research on Ag-bearing stainless steel was mainly concerned on its antibacterial properties, mechanical properties, and corrosion resistance. However, the microstructures of Ag-bearing stainless steels, especially the occurrence and distribution of Ag, have not been studied intensively. The present work studies the effects of Ag content on the microstructure, texture, and mechanical properties of austenitic stainless steel using OM, SEM, secondary ion mass spectrometer (SIMS), EBSD, and tensile test. SIMS analysis shows that Ag exists in austenitic stainless steel mainly in the form of Ag, Ag x S, and Ag x N compounds, which are mainly distributed at the grain boundaries and less within the grain. During recrystallization, the nucleation rate increases by the stimulation of coarse Ag, Ag x S, and Ag x N compound particles, while the grain growth is hindered by fine Ag, Ag x S, and Ag x N compound particles. Hence, the average grain size of 304, 304Ag-1, and 304Ag-2 stainless steel changes from (126 ± 3) μm to (47 ± 4) μm. The EBSD results show that the maximum pole densities of 304, 304Ag-1, and 304Ag-2 stainless steel samples are 3.24, 2.71, and 2.22, respectively, indicating that Ag can reduce the anisotropy of austenitic stainless steel. The yield strength and tensile strength of austenitic stainless steels decrease with the increase of Ag content, and the elongation increases with the increase of Ag content. Furthermore, strength and elongation consistency of Ag-bearing 304 stainless steel are much better compared to that of 304 steel at the angles of 0°, 45°, and 90° to rolling direction. The phenomenon of high Schmid factor grains surrounding low Schmid factor occurs in austenitic stainless steel, and the average Schmid factor of grains in {111} <110> slip system increases with the increase of Ag content, and the proportion of grains in “soft orientation” increases. Under the given loading stress, Ag-bearing austenitic stainless steel is more prone to deformation.
Table 1 Chemical compositions of stainless steels with different Ag contents
Fig.1 Schematic of tensile sample (unit: mm)
Fig.2 XRD spectra of stainless steels with different Ag contents
Fig.3 OM images of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (Arrows show spherical particles)
Fig.4 SEM images of 304Ag-1 (a) and 304Ag-2 (b) stainless steels (Inset shows the high magnified image)
Point
C
Si
Ti
Cr
Mn
Fe
Ni
Ag
A
7.59
0.30
0.19
17.57
1.37
57.36
10.08
5.54
B
5.56
0.30
1.77
18.59
1.46
61.35
10.97
-
C
7.61
0.32
0.30
17.60
1.27
56.24
10.04
6.62
D
7.59
0.17
0.52
16.22
1.11
54.72
7.97
11.70
Table 2 EDS results of particles A-D in Fig.4
Fig.5 SEM image and corresponding EDS mappings of 304Ag-2 stainless steel
Fig.6 Secondary ion mass spectrometry (SIMS) of Ag (a), Ag x N (b), and Ag x S (c) particles in 304Ag-2 stainless steel (M / Z—mass-to-charge ratio)
Fig.7 Two-dimensional element distributions in SIMS of 304Ag-1 (a) and 304Ag-2 (b) stainless steels
Fig.8 Engineering stress-strain curves of stainless steels with different Ag contents in different directions (a) 0°, rolling direction (RD) (b) 45° (c) 90°, transeverse direction (TD)
Direction
Material
Rm / MPa
Rp0.2 / MPa
A / %
0° (RD)
304
733
241
77
304Ag-1
623
233
80
304Ag-2
592
221
81
45°
304
690
223
73
304Ag-1
611
223
80
304Ag-2
585
219
81
90° (TD)
304
703
235
80
304Ag-1
615
230
81
304Ag-2
598
223
81
Table 3 Mechanical properties of stainless steels with different Ag contents in different directions
Fig.9 Inverse pole figures of RD, TD, and ND of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (ND—normal direction)
Fig.10 Schmid factor distributions of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉 slip systems
Fig.11 Frequency distribution histograms of Schmid factor of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉slip systems
1
Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
2
Yi R, Ye F, Zhang G G, et al. Current status of research on anti-bacterial stainless steels[J]. Electroplat. Finish., 2015, 34: 635
Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, A675: 243
5
Xi T, Yang C G, Shahzad M B, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Mater. Des., 2015, 87: 303
doi: 10.1016/j.matdes.2015.08.011
6
Yuan Z, Xi T, Yang C G, et al. Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel[J]. Mater. Lett., 2020, 272: 127815
doi: 10.1016/j.matlet.2020.127815
7
Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J]. Int. Biodeterior. Biodegrad., 2016, 110: 199
doi: 10.1016/j.ibiod.2016.03.026
8
Li M J, Nan L, Xu D K, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. J. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1016/j.jmst.2014.11.016
9
Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Tech. Rep., 2002, 46: 37
10
Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2016, C63: 376
11
Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel[J]. Appl. Surf. Sci., 2010, 256: 3642
doi: 10.1016/j.apsusc.2010.01.001
12
Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 539
doi: 10.1007/s40195-014-0085-8
13
Mo J Q, Feng G H, Zhang W, et al. Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel[J]. China Metall., 2022, 32(8): 62
Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27: 449
doi: 10.1080/08927014.2011.582642
15
Morrison W B. Influence of silver on structure and properties of low-carbon steel[J] Mater. Sci. Technol., 1985, 1: 954
doi: 10.1179/mst.1985.1.11.954
16
Chiang W C, Tseng I S, Møller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Mater. Chem. Phys., 2010, 119: 123
doi: 10.1016/j.matchemphys.2009.08.035
17
Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour[J]. Virtual Phys. Prototy., 2018, 13: 146
doi: 10.1080/17452759.2018.1458991
18
Лянкишев H N, translated by Guo Q W. Manual of Phase Diagrams for Metal Binary Systems[M]. Beijing: Chemical Industry Press, 2009: 15
Лянкишев H N著, 郭青蔚 译. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009: 15
19
Swartzendruber L J. The Ag-Fe (silver-iron) system[J]. Bull. Alloy Phase Diagrams, 1984, 5: 560
doi: 10.1007/BF02868316
20
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 396
Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D]. Beijing: Tsinghua University, 2014
轩 阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学, 2014
22
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 408
23
Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
doi: 10.1016/j.scriptamat.2009.09.032
24
Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture[J]. Acta Mater., 1997, 45: 4593
doi: 10.1016/S1359-6454(97)00157-2
25
Peng X Y, Guo M X, Wang X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169
Lu J, Zeng X Q, Ding W J. The Hall-Petch relationship[J]. Light Met., 2008, (8): 59
路 君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, (8): 59
27
Gu Y F, Ro Y, Harada H. Tensile properties of chromium alloyed with silver[J]. Metall. Mater. Trans., 2004, 35A: 3329
28
Yu Y N. Foundation of Materials Science[M]. 2nd Ed., Beijing: Higher Education Press, 2012: 256
余永宁. 材料科学基础[M]. 第二版, 北京: 高等教育出版社, 2012: 256
29
Li Y R, Yun Z Z. Materials Physics Introduction[M]. Beijing: Tsinghua University Press, 2001: 312
李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001: 312
30
Zhang Y. Effect of heat treatment on the growth behavior of second phase particles in deformed zirconium alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017
张 瑶. 热处理条件对形变锆合金第二相粒子长大行为的影响[D]. 上海: 上海交通大学, 2017
31
Du Y Z. Study on Microstructures and mechanical properties of Mg-Zn alloys microaaloyed with Ca and Ce/La[D]. Harbin: Harbin Institute of Technology, 2015
Chen L W, Li P A, Liu Z, et al. Effects of trace elements on properties and microstructure of electronic aluminum foil billet[J]. J. Kunming Univ. Sci. Technol. (Nat. Sci.), 2017, 42(1): 14
Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy[J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles[J]. Mater. Sci. Eng., 2012, A531: 2