Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 495-508    DOI: 10.11900/0412.1961.2022.00377
Research paper Current Issue | Archive | Adv Search |
Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying
CAI Jie1,2(), GAO Jie1,2, HUA Yinqun2, YE Yunxia2, GUAN Qingfeng3, ZHANG Xiaofeng4
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
3 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
4 Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, China
Cite this article: 

CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying. Acta Metall Sin, 2024, 60(4): 495-508.

Download:  HTML  PDF(4038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

MCrAlY-type coatings are widely applied to thermally loaded structures of aero-engines as standalone overlays and as a bond-coat for a thermal barrier coating system, owing to their good resistance to high-temperature oxidation and hot corrosion. The thermally grown oxide (TGO) formed at the interface is the primary factor affecting the durability of MCrAlY coatings, which is closely related to the coating method used. The coating performed by low-pressure plasma spraying (LPPS) has great adhesion, high deposition rate, and low internal oxidation. However, the prepared defects of rough surface and porosity adversely affect the antioxidant performance. High-current pulsed electron beam (HCPEB), as a powerful tool for surface modification of different materials, can normalize the defects, polish the coating surface, and reconstruct microstructures, which is crucial to promote steady growth of the protective TGO. Therefore, in this work, NiCrAlY coatings were prepared on the surface of a nickel-based superalloy via LPPS and then irradiated via HCPEB. The microstructural evolution, static oxidation performance at 1150oC, and TGO residual stress distribution of NiCrAlY coatings before and after HCPEB modification were compared. The microstructural results show that the surface of the as-sprayed coating was rather rough and there were many unmelted large particles. After HCPEB irradiation, the surface of the irradiated coating was remelted, and became much flat and smooth. A rather dense and compact remelted layer approximately 12 μm in thickness was obtained. Furthermore, deformation structures and Y-Al enriched nanodispersed particles were introduced inside the remelted layer. The results of static oxidation and TGO residual stress show that after 150 h of oxidation, the oxide film formed on the as-sprayed coating fell off locally, accompanied by serious internal oxidation. Due to the cracking and peeling of the TGO, the internal stress was released. Conversely, the oxide film on the remelted surface of HCPEB irradiated coating grew steadily, and there was no trace of peeling, and the TGO stress increased steadily. The experimental results show that HCPEB is an effective and promising approach to drastically improve the high-temperature oxidation resistance of thermally sprayed MCrAlY coatings.

Key words:  low-pressure plasma spraying (LPPS)      high-current pulsed electron beam (HCPEB)      NiCrAlY coating      microstructure      high-temperature oxidation resistance     
Received:  11 August 2022     
ZTFLH:  TG174.44  
Fund: National Natural Science Foundation of China(U1933124);China Postdoctoral Science Foundation(2021M701476);Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX21_1699)
Corresponding Authors:  CAI Jie, associate professor, Tel: (0511)88797906, E-mail: caijie@ujs.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00377     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/495

ParameterValueUnit
Current1650A
Voltage51.6V
Powder feeding gas (Ar)110L·min-1
Powder feeding gas (H2)6L·min-1
Powder feedrate30g·min-1
Chamber pressure40kPa
Spray distance450mm
Table 1  Low-pressure plasma spraying (LPPS) parameters
Fig.1  XRD spectra of NiCrAlY coatings before and after high-current pulsed electron beam (HCPEB) modification
Fig.2  Morphologies and EDS analyses of NiCrAlY coatings before and after HCPEB modification
(a) three-dimensional graph of the as-sprayed coating (Sa—surface roughness)
(b, c) surface (b) and cross-section (c) morphologies of the as-sprayed coating
(d) three-dimensional graph of the irradiated coating
(e, f) surface (e) and cross-section (f) morphologies of the irradiated coating
(g) EDS mapping of the irradiated coating
RegionOAlCrNiY
A2.8722.5519.3353.911.34
B5.4513.8340.9838.621.12
Table 2  EDS results of each region in Fig.2f
Fig.3  TEM images and EDS analyses of NiCrAlY coatings before and after HCPEB modification
(a) as-sprayed coating
(b) bright field image of region A in Fig.3a
(c) dark field image of region A in Fig.3a and corresponding EDS mappings
(d) irradiated coating
(e) bright field image of region B in Fig.3d
(f) dark field image of region B in Fig.3d and corresponding EDS mappings
Fig.4  Al2O3 Raman peak spectra of NiCrAlY coatings before (a-c) and after (d-f) HCPEB modification at 1150oC in transient oxidation for 5 min (a, d), 15 min (b, e), and 30 min (c, f)
Fig.5  Transient oxidation morphologies of NiCrAlY coatings before (a-c) and after (d-f) HCPEB modification at 1150oC for 5 min (a, d), 15 min (b, e), and 30 min (c, f) (Inset in Fig.5d shows morphology of θ -Al2O3)
RegionOAlCrNiY
A47.4437.415.559.500.10
B58.0534.413.573.97-
C47.9738.174.549.32-
D49.9739.434.506.10-
E45.3631.086.2717.29-
F48.0339.544.797.64-
G42.2643.904.948.390.51
H55.1338.072.723.970.11
I49.4241.014.325.140.11
J49.7640.232.947.07-
Table 3  EDS results of each region in Fig.5
Fig.6  XRD spectra of NiCrAlY coatings after long-term oxidation at 1150oC for different time before (a) and after (b) HCPEB modification
Fig.7  Cross-section morphologies and EDS analyses of the as-sprayed coating after long-term oxidation at 1150oC for 10 h (a), 50 h (b), 100 h (c), and 150 h (d) (δTGO—average thickness of the thermally grown oxide (TGO))
Fig.8  Cross-section morphologies and EDS analyses of the irradiated coating after long-term oxidation at 1150oC for 10 h (a), 50 h (b), 100 h (c), and 150 h (d)
Fig.9  Curves of TGO residual stress versus oxidation time (t)
Fig.10  TGO growth kinetics (a) and fitting lines (b) of NiCrAlY coatings before and after HCPEB modification (Kp—growth rate of oxide film)
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
pmid: 11951028
2 Chen W R, Wu X, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surf. Coat. Technol., 2008, 202: 2677
doi: 10.1016/j.surfcoat.2007.09.042
3 Chen W R, Wu X, Marple B R, et al. The growth and influence of thermally grown oxide in a thermal barrier coating[J]. Surf. Coat. Technol., 2006, 201: 1074
doi: 10.1016/j.surfcoat.2006.01.023
4 Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium[J]. Corros. Sci., 2019, 153: 178
doi: 10.1016/j.corsci.2019.03.051
5 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO[J]. Surf. Coat. Technol., 2011, 205: 5178
doi: 10.1016/j.surfcoat.2011.05.025
6 Liu G X, Huang G H, Luo X K, et al. The influence of surface shot peening on the isothermal oxidation behavior of NiCrAlYSi coating[J]. Acta. Metall. Sin., 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
刘冠熙, 黄光宏, 罗学昆 等. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
7 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying[J]. Surf. Coat. Technol., 2010, 205: 2225
doi: 10.1016/j.surfcoat.2010.08.144
8 Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta. Mater., 2000, 48: 3963
doi: 10.1016/S1359-6454(00)00171-3
9 Chen R R, Gong X, Wang Y, et al. Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys[J]. Corros. Sci., 2018, 136: 244
doi: 10.1016/j.corsci.2018.03.008
10 Xie S M, Lin S S, Shi Q, et al. A study on the mechanical and thermal shock properties of MCrAlY coating prepared by arc ion plating[J]. Surf. Coat. Technol., 2021, 413: 127092
doi: 10.1016/j.surfcoat.2021.127092
11 Lu J, Chen Y, Zhang H, et al. Superior oxidation and spallation resistant NiCoCrAlY bond coat via homogenizing the yttrium distribution[J]. Corros. Sci., 2019, 159: 108145
doi: 10.1016/j.corsci.2019.108145
12 Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat[J]. Appl. Surf. Sci., 2017, 406: 99
doi: 10.1016/j.apsusc.2017.02.123
13 Zhang Y J, Sun X F, Zhang Y C, et al. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating[J]. Mater. Sci. Eng., 2003, A360: 65
14 Zakeri A, Bahmani E, Aghdam A S R, et al. A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation[J]. J. Alloys Compd., 2020, 835: 155319
doi: 10.1016/j.jallcom.2020.155319
15 Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
16 Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating[J]. Mater. Rev., 2007, 21(7): 59
宋 鹏, 陆建生, 赵宝禄 等. 活性元素影响MCrAlY涂层氧化性能的研究进展[J]. 材料导报, 2007, 21(7): 59
17 Peng X, Jiang S M, Sun X D, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating[J]. Acta. Metall. Sin., 2016, 52: 625
doi: 10.11900/0412.1961.2016.00013
彭 新, 姜肃猛, 孙旭东 等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为[J]. 金属学报, 2016, 52: 625
18 Cai J, Guan Q F, Lv P, et al. Surface modification of CoCrAlY coating by high-current pulsed electron beam treatment under the “evaporation” mode[J]. Nucl. Instrum. Meth., 2014, 337B: 90
19 Cai J, Yang S Z, Ji L, et al. Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam[J]. Surf. Coat. Technol., 2014, 251: 217
doi: 10.1016/j.surfcoat.2014.04.029
20 Müller G, Schumacher G, Strauß D. Oxide scale growth on MCrAlY coatings after pulsed electron beam treatment[J]. Surf. Coat. Technol., 1998, 108-109: 43
doi: 10.1016/S0257-8972(98)00631-8
21 Zhang K M, Yang D Z, Zou J X, et al. Surface modification of 316L stainless steel by high current pulsed electron beam Ⅰ. Selective purification of surface and its mechanism[J]. Acta. Metall. Sin., 2007, 43: 64
张可敏, 杨大智, 邹建新 等. 316L不锈钢强流脉冲电子束表面改性研究 Ⅰ. 表面选择净化及机理[J]. 金属学报, 2007, 43: 64
22 Cai J, Yao Y M, Wei J Z, et al. Microstructure and transient oxidation behavior of NiCoCrAlYSiHf coating modified via high-current pulsed electron beam[J]. Surf. Coat. Technol., 2021, 422: 127499
doi: 10.1016/j.surfcoat.2021.127499
23 Xu B Q, Luo L R, Lu J, et al. Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating[J]. Surf. Coat. Technol., 2020, 381: 125112
doi: 10.1016/j.surfcoat.2019.125112
24 Yang H Z, Zou J P, Shi Q, et al. Growth stress and interdiffusion analysis of NiCoCrAlYTa coating during oxidation[J]. Surf. Eng., 2021, 37: 808
doi: 10.1080/02670844.2020.1816133
25 Han Y J, Ye F X, Lu G X, et al. Residual stress evolution of thermally grown oxide in thermal barrier coatings deposited onto nickel-base superalloy and iron-base alloy with thermal exposure ageing[J]. J. Alloys Compd., 2014, 584:19
doi: 10.1016/j.jallcom.2013.08.144
26 Cai J, Yao Y M, Gao C Z, et al. Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J]. J. Alloys Compd., 2021, 881: 160651
doi: 10.1016/j.jallcom.2021.160651
27 Qin Y, Zou J X, Dong C, et al. Temperature-stress fields and related phenomena induced by a high current pulsed electron beam[J]. Nucl. Instrum. Meth., 2004, 225B: 544
28 Zhang K M, Zou J X, Grosdidier T, et al. Crater-formation-induced metastable structure in an AISI D2 steel treated with a pulsed electron beam[J]. Vacuum, 2012, 86: 1273
doi: 10.1016/j.vacuum.2011.11.013
29 Grosdidier T, Zou J X, Bolle B, et al. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes[J]. J. Alloys Compd., 2010, 504(): S508
doi: 10.1016/j.jallcom.2010.04.010
30 Chen H F, Zhang C, Xuan J H, et al. Effect of TGO evolution and element diffusion on the life span of YSZ/Pt-Al and YSZ/NiCrAlY coatings at high temperature[J]. Ceram. Int., 2020, 46: 813
doi: 10.1016/j.ceramint.2019.09.037
31 Hu Y, Cai C Y, Wang Y G, et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corros. Sci., 2018, 142: 22
doi: 10.1016/j.corsci.2018.06.035
32 Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys[J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
33 Ullah A, Khan A, Bao Z B, et al. Temperature effect on early oxidation behavior of NiCoCrAlY coatings: Microstructure and phase transformation[J]. Acta. Metall. Sin. (Eng. Lett.), 2022, 35: 975
34 Zhou B Y, He J, Zhou Q J, et al. Effects of laser shock processing on θ -Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ′ + β) two-phase Ni-34Al-0.1Dy alloys[J]. J. Mater. Sci. Technol., 2022, 109: 157
doi: 10.1016/j.jmst.2021.09.028
35 Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J]. Corros. Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
36 Wang H Y, Zuo D W, Wang M D, et al. Effects of nano-CeO2p on oxidation behaviors of NiCoCrAlY laser cladding coatings on Ni-based superalloys[J]. Acta. Metall. Sin., 2009, 45: 971
王宏宇, 左敦稳, 王明娣 等. 纳米CeO2p对镍基高温合金表面NiCoCrAlY激光熔覆涂层氧化行为的影响[J]. 金属学报, 2009, 45: 971
37 Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings[J]. Surf. Coat. Technol., 2001, 146-147: 124
doi: 10.1016/S0257-8972(01)01482-7
38 Yang H Z, Zou J P, Shi Q, et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J]. Corros. Sci., 2019, 153: 162
doi: 10.1016/j.corsci.2019.03.022
[1] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[2] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[3] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[4] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[5] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[6] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[7] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[8] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[9] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[10] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[13] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[15] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
No Suggested Reading articles found!