Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 691-698    DOI: 10.11900/0412.1961.2022.00510
Research paper Current Issue | Archive | Adv Search |
Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings
WANG Zheng1, WANG Zhenyu1, WANG Aiying1,2, YANG Wei3, KE Peiling1,2()
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
Cite this article: 

WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings. Acta Metall Sin, 2024, 60(5): 691-698.

Download:  HTML  PDF(2398KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since the 2011 Fukushima nuclear accident, much attention has been given to accident-tolerant fuel cladding coating. In this study, micro-arc oxidation (MAO) and high-power pulsed magnetron sputtering were employed to deposit MAO/Cr composite coatings on the surface of Zirlo alloy. The effects of micro-arc oxidation time on the microstructure, mechanical properties, and high-temperature steam oxidation resistance of MAO/Cr composite coatings were investigated. Results showed that when the micro-arc oxidation time was enhanced from 3 min to 9 min, the (200)-plan texture coefficient increased from 83% to 100%. Moreover, with the increase in micro-arc oxidation time, the composite coating fracture toughness first increased, and then decreased after reaching a peak of 4.64 MPa⋅m1/2 in 6 min. After steam oxidation at 900°C for 1 h, the composite coating systems showed delamination. Among them, MAO3min/Cr and MAO6min/Cr coatings gained less weight, whereas MAO9min/Cr coating gained more weight and formed a large number of microcracks on its surface cross-section. It can be observed that the obtained composite coating with a 6-min micro-arc oxidation has both excellent mechanical properties and outstanding resistance to high-temperature steam oxidation.

Key words:  micro-arc oxidation      high-power pulsed magnetron sputtering      microstructure      mechanical property      high-temperature steam oxidation resistance     
Received:  12 October 2022     
ZTFLH:  TG174.4  
Fund: CAS Interdisciplinary Innovation Team(292020000008)
Corresponding Authors:  KE Peiling, professor, Tel: (0574)86694790, E-mail: kepl@nimte.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00510     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/691

Fig.1  Schematics of micro-arc oxidation (MAO) (a) and high-power pulsed magnetron sputtering (HiPIMS) (b) deposition systems (MFC—mass flow controller)

Method

Time

min

Ar flow

mL·min-1

Pressure

Pa

Bias voltage

V

Power supply

Power

kW

Current

A

Voltage

V

Pulse width

μs

Duty ratio
Etching1540--300-----
HiPIMS420500.27-803.04.07601005%
Table 1  Deposition parameters of Cr coatings
Fig.2  XRD spectra (a) and texture coefficients (b) of three composite coatings (T(110), T(200), and T(211) represent (110), (200), and (211) texture, respectively)
Fig.3  Surface (a1, a2, b1, b2, c1, c2) and cross-sectional (a3, b3, c3) SEM images of the three composite coatings (a1-a3) MAO3min/Cr (b1-b3) MAO6min/Cr (c1-c3) MAO9min/Cr
Fig.4  Hardness curve and corresponding indentation morphologies (insets) of Cr coating and MAO/Cr composite coatings
CoatingP1P2P3Average
MAO3min/Cr1.641.671.731.68
MAO6min/Cr4.754.594.594.64
MAO9min/Cr2.132.032.072.08
Table 2  Fracture toughness (KIC) of the three composite coatings
Fig.5  Mass gain (a), XRD spectra (b), and texture coefficients (c) of the three composite coatings after high-temperature steam oxidation
Fig.6  Surface SEM images of the three composite coatings oxidized at 900oC for 1 h (Insets are partial enlarged views)
(a) MAO3min/Cr
(b) MAO6min/Cr
(c) MAO9min/Cr
PointCrO
136.9463.06
242.0957.91
335.6664.34
439.3760.63
536.1163.89
640.9859.02
Table 3  EDS results of chemical compositions of the points in Fig.6
Fig.7  Cross-sectional SEM images and EDS line analyses of the three composite coatings oxidized at 900oC for 1 h
(a) MAO3min/Cr (b) MAO6min/Cr (c) MAO9min/Cr
Fig.8  Cross-sectional morphologies of the three corrosive composite coatings etched by HF sloution
(a) MAO3min/Cr (b) MAO6min/Cr (c) MAO9min/Cr
Fig.9  Schematic of oxidation process of the MAO9min/Cr composite coating on Zirlo substrate at 900oC in steam environment
1 Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
doi: 10.1016/j.engfailanal.2011.06.010
2 Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
3 Kim H G, Yang J H, Kim W J, et al. Development status of accident-tolerant fuel for light water reactors in Korea[J]. Nucl. Eng. Technol., 2016, 48: 1
doi: 10.1016/j.net.2015.11.011
4 Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
5 Ko J, Kim J W, Min H W, et al. Review of manufacturing technologies for coated accident tolerant fuel cladding[J]. J. Nucl. Mater., 2022, 561: 153562
doi: 10.1016/j.jnucmat.2022.153562
6 Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding[J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
7 Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of ZrNb alloy with ZrO2/Cr bilayer coating[J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
8 Zhang L F, Lai P, Liu Q D, et al. Fretting wear behavior of zirconium alloy in B-Li water at 300oC[J]. J. Nucl. Mater., 2018, 499: 401
doi: 10.1016/j.jnucmat.2017.12.003
9 Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam[J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
10 Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
11 Jiang J S, Wang D Q, Du M Y, et al. Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy[J]. Nucl. Sci. Tech., 2021, 32: 1
12 Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment[J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
13 Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process[J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
14 Shi W C, Dong L M, Li Q, et al. One-step approach for the fabrication and characterization of hydroxyapatite/TiO2 composite ceramic coatings by micro-arc oxidation in situ on the surface of pure titanium[J]. Key Eng. Mater., 2014, 602-603: 598
doi: 10.4028/www.scientific.net/KEM.602-603
15 Wang L L, Hu X, Nie X. Deposition and properties of zirconia coatings on a zirconium alloy produced by pulsed DC plasma electrolytic oxidation[J]. Surf. Coat. Technol., 2013, 221: 150
doi: 10.1016/j.surfcoat.2013.01.040
16 Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions[J]. Corros. Sci., 2021, 181: 109216
doi: 10.1016/j.corsci.2020.109216
17 Wang X P, Wei K J, Guan H H, et al. High temperature oxidation of Zr-1Nb alloy with plasma electrolytic oxidation coating in 900-1200oC steam environment[J]. Surf. Coat. Technol., 2021, 407: 126768
doi: 10.1016/j.surfcoat.2020.126768
18 Zuo X, Zhang D, Chen R D, et al. Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J]. Plasma Sources Sci. Technol., 2020, 29: 015013
19 Quillin K, Yeom H, Dabney T, et al. Microstructural and nanomechanical studies of PVD Cr coatings on SiC for LWR fuel cladding applications[J]. Surf. Coat. Technol., 2022, 441: 128577
doi: 10.1016/j.surfcoat.2022.128577
20 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
21 Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture-toughness: I, Direct crack measurements[J]. J. Am. Ceram. Soc., 1981, 64: 533
doi: 10.1111/jace.1981.64.issue-9
22 Wu J K, Wang H K, Zhang Z C, et al. High-pressure synthesis and performance analysis of WC-cBN-MoS2 self-lubricating ceramic composites[J]. Int. J. Refract. Met. Hard Mater., 2023, 110: 105989
doi: 10.1016/j.ijrmhm.2022.105989
23 Gautier C, Machet J. Effects of deposition parameters on the texture of chromium films deposited by vacuum arc evaporation[J]. Thin Solid Films, 1996, 289: 34
doi: 10.1016/S0040-6090(96)08891-8
24 Zhang J M, Xu K W, Zhang M R. Theory of abnormal grain growth in thin films and analysis of energy anisotropy[J]. Acta Phys. Sin., 2003, 52: 1207
doi: 10.7498/aps
张建民, 徐可为, 张美荣. 薄膜中异常晶粒生长理论及能量各向异性分析[J]. 物理学报, 2003, 52: 1207
25 Wang Z X, Zhang J W, Lv W J, et al. Growth mechanism of ceramic coating on ZK60 magnesium alloy Based on two-step current-decreasing mode of micro-arc oxidation[J]. Adv. Eng. Mater., 2022, 24: 2101232
doi: 10.1002/adem.v24.6
26 Huang J H, Wei L J, Ting I S. Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation[J]. Mater. Chem. Phys., 2022, 275: 125253
doi: 10.1016/j.matchemphys.2021.125253
27 Wang Y M, Zhang P F, Guo L X, et al. Effect of microarc oxidation coating on fatigue performance of Ti-Al-Zr alloy[J]. Appl. Surf. Sci., 2009, 255: 8616
doi: 10.1016/j.apsusc.2009.06.038
28 Meng Y, Zeng S, Teng Z, et al. Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J]. Thin Solid Films, 2021, 730: 138699
doi: 10.1016/j.tsf.2021.138699
29 Wang S X, Bai S X, Zhu L A, et al. Research progress of chromium coating on zirconium alloy for nuclear fuel cladding[J]. Surf. Technol., 2021, 50(1): 221
王淑祥, 白书欣, 朱利安 等. 核燃料包壳锆合金表面铬涂层研究进展[J]. 表面技术, 2021, 50(1): 221
[1] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[2] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[3] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[4] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[5] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[6] LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. 金属学报, 2024, 60(5): 585-604.
[7] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[8] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[9] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[10] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[11] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[12] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[13] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[14] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[15] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
No Suggested Reading articles found!