Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 453-463    DOI: 10.11900/0412.1961.2022.00064
Research paper Current Issue | Archive | Adv Search |
Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys
FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing(), DONG Chuang
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys. Acta Metall Sin, 2024, 60(4): 453-463.

Download:  HTML  PDF(4247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In general, Ni-based superalloys exhibit high strength, good oxidation and corrosion resistance, and good creep-resistant properties at high temperatures (HTs) because of the coherent precipitation of cuboidal γ′ nanoparticles into a fcc-γ matrix induced by co-alloying of multiple elements. The present work designed a series of Ni-based superalloys based on the cluster composition formula [Al-Ni12](Al1(Ti, Nb, Ta)0.5(Cr, Mo, W)1.5), with S1-CM (Cr1.0Mo0.5), S2-CW (Cr1.0W0.5), and S3-CMW (Cr0.7Mo0.4W0.4), in which the amounts of Cr, Mo, and W were changed, whereas the contents of other elements were maintained. In addition, the effect of Cr, Mo, and W variation on the thermal stability of γ /γ′ coherent microstructure at HT in these superalloys was investigated. Alloy ingots were prepared by arc melting under an argon atmosphere, solid solutionized at 1300°C for 15 h, and then aged at 900°C for up to 500 h. Microstructural characterization and mechanical properties of these alloys in different aged states were studied by XRD, SEM, EPMA, TEM, Vickers hardness testing, and compressive testing.Result showed that all these three alloys have a high volume fraction (f > 70%) of γ′ particles uniformly distributed in the fcc-γ matrix. In particular, the γ′ particle shape is ellipsoidal in S1-CM and S2-CW alloys, whereas it is cuboidal in the S3-CMW alloy primarily because the latter has a more negative γ /γ′ lattice misfit (δ = -0.47%) than the former (δ = -0.25% to -0.33%). After aging for 500 h, the morphology of γ′ particles in each alloy has no evident change, and all of the particles have a slow coarsening rate (K = 10-18 nm3/s), in which the S3-CMW alloy exhibits the highest γ /γ′ microstructural stability (the coarsening rate of γ′ particles being K = 10.02 nm3/s). Moreover, the amount of second-phase precipitation near the grain boundaries in the S3-CMW alloy is less than that in the former two alloys. The microhardness test results showed that the microhardness of each alloy remains almost constant with aging time, thereby indicating the thermal stability of the coherent structure. In particular, the microhardness of the S3-CMW alloy is 397-418 HV, and the room-temperature compression yield strength is 818 MPa in the 200-h-aged state.

Key words:  Ni-based superalloy      coherent microstructure      γ′ particle coarsening      second phase precipitation     
Received:  21 February 2022     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(91860108);Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(2020JJ25CY004)
Corresponding Authors:  WANG Qing, professor, Tel: (0411)84708615, E-mail: wangq@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00064     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/453

AlloyCluster formula

Composition

mass fraction, %

r

nm

f

%

H

HV

aγ, aγ'

nm

δ

%

S1-CM

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr1.0Mo0.5))

Ni77.23Al5.92Ta3.31Ti0.88Nb1.70-

Cr5.70Mo5.26

329 ± 4673.9 ± 3.5356 ± 5

aγ = 0.3605 ± 0.0002

aγ' = 0.3596 ± 0.0003

-0.25 ± 0.06
S2-CW

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr1.0W0.5))

Ni73.68Al5.65Ta3.16Ti0.83Nb1.62-

Cr5.44W9.62

323 ± 5274.7 ± 3.9374 ± 7

aγ = 0.3603 ± 0.0002

aγ' = 0.3591 ± 0.0002

-0.33 ± 0.05
S3-CMW

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr0.7Mo0.4W0.4))

Ni73.35Al5.62Ta3.14Ti0.83Nb1.61-

Cr3.79Mo4.00W7.66

288 ± 5476.1 ± 3.7397 ± 7

aγ = 0.3623 ± 0.0004

aγ' = 0.3606 ± 0.0003

-0.47 ± 0.07
Table 1  Related data of the designed series of alloys, including cluster formula, alloy composition, γ′ particle size (r), γ′ volume fraction (f), microhardness (H) after aging at 900oC for 500 h, and lattice constant (aγ, aγ'), lattice misfit (δ) between γ and γ′ phase after aging at 900oC for 50 h
Fig.1  Equilibrium phase diagrams of the designed alloys calculated by Pandat software (Inset shows the typical peak-separation fitting of (200) plane in S1-CM alloy)
(a) S1-CM (b) S2-CW (c) S3-CMW
Fig.2  OM image of the S3-CMW alloy after aging at 900oC for 50 h
Fig.3  XRD spectra of designed series of alloys after aging at 900oC for 50 h (Inset shows the corresponding local plots)
Fig.4  SEM images of designed alloys of S1-CM (a1, b1), S2-CW (a2, b2), and S3-CMW (a3, b3) after solid-solutionized at 1300oC for 15 h (a1-a3) and aged at 900oC for 50 h (b1-b3)
Fig.5  TEM dark-field images and selected area electron diffraction (SAED) patterns (insets) of 50 h-aged S1-CM (a) and S3-CMW (b) alloys
Fig.6  Microstructure evolutions of the alloys S1-CM (a1-c1), S2-CW (a2-c2), and S3-CMW (a3-c3) aged at 900oC for 100 h (a1-a3), 200 h (b1-b3), and 500 h (c1-c3)
Fig.7  Variations of particle size (a) and volume fraction (b) of γ′ precipitates with the aging time at 900oC in the designed alloys
Fig.8  SEM images of microstructures on the grain boundaries in 500 h-aged alloys at 900oC
(a) S1-CM (b) S2-CW (c) S3-CMW
Fig.9  TEM bright-field images and the corresponding SAED patterns (insets) of precipitated phases on grain boundaries in 500 h-aged S3-CMW alloy at 900oC
(a) μ phase (b) fcc phase
Fig.10  Back scattered electrons image (BEI) and corresponding elemental distribution maps on grain boundaries in 500 h-aged S3-CMW alloy at 900oC
Fig.11  Variations of microhardness of the 900oC-aged alloys with the aging time (a) and compressive true stress-strain curves of 200 h-aged alloys measured at room temperature (b)
Fig.12  Variations of the average particle size r3 with the aging time at 900oC in the series of alloys (K—coarsening rate constant, R2—coefficient of determination)
1 Phillips P J, Unocic R R, Mills M J. Low cycle fatigue of a polycrystalline Ni-based superalloy: Deformation substructure analysis[J]. Int. J. Fatigue, 2013, 57: 50
doi: 10.1016/j.ijfatigue.2012.11.008
2 Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy[J]. Mater. Des., 2015, 65: 57
doi: 10.1016/j.matdes.2014.08.059
3 Chiou M S, Jian S R, Yeh A C, et al. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy[J]. Mater. Sci. Eng., 2016, A655: 237
4 Jin T, Zhou Y Z, Wang X G, et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153
doi: 10.11900/0412.1961.2015.00429
金 涛, 周亦胄, 王新广 等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153
5 Wang B, Zhang J, Pan X J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298
doi: 10.11900/0412.1961.2016.00379
王 博, 张 军, 潘雪娇 等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298
6 Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ ′ alloys[J]. Acta Mater., 2012, 60: 1771
doi: 10.1016/j.actamat.2011.12.008
7 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys[J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
8 Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 19
9 Yuan Y, Kawagishi K, Koizumi Y, et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800oC[J]. Mater. Sci. Eng., 2014, A608: 95
10 Jácome L A, Nörtershäuser P, Heyer J K, et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Mater., 2013, 61: 2926
doi: 10.1016/j.actamat.2013.01.052
11 Zhang Y, Wang Q, Dong H G, et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900oC[J]. Acta Metall. Sin., 2018, 54: 591
张 宇, 王 清, 董红刚 等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54: 591
12 Epishin A, Brückner U, Portella P D, et al. Influence of small rhenium additions on the lattice spacing of nickel solid solution[J]. Scr. Mater., 2003, 48: 455
doi: 10.1016/S1359-6462(02)00436-0
13 Heckl A, Neumeier S, Cenanovic S, et al. Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys[J]. Acta Mater., 2011, 59: 6563
doi: 10.1016/j.actamat.2011.07.002
14 Tian S G, Wang M G, Yu H C, et al. Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys[J]. Mater. Sci. Eng., 2010, A527: 4458
15 Kamara A B, Ardell A J, Wagner C N J. Lattice misfits in four binary Ni-Base γ /γ′ alloys at ambient and elevated temperatures[J]. Metall. Mater. Trans., 1996, 27A: 2888
16 MacKay R A, Nathal M V, Pearson D D. Influence of molybdenum on the creep properties of nickel-base superalloy single crystals[J]. Metall. Mater. Trans., 1990, 21A: 381
17 Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys[J]. Metall. Mater. Trans., 1987, 18A: 1961
18 Pollock T M, Field R D. Dislocations and high-temperature plastic deformation of superalloy single crystals[J]. Dislocat. Solids, 2002, 11: 547
19 Liu X G, Wang L, Lou L H, et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. J. Mater. Sci. Technol., 2015, 31: 143
doi: 10.1016/j.jmst.2013.12.019
20 Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Mater., 2005, 53: 4623
doi: 10.1016/j.actamat.2005.06.013
21 Mughrabi H. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
22 Kawagishi K, Sato A, Harada H, et al. Oxidation resistant Ru containing Ni base single crystal superalloys[J]. Mater. Sci. Technol., 2009, 25: 271
doi: 10.1179/174328408X361517
23 Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238[A]. Superalloys 2012[C]. Hoboken: Wiley, 2012: 189
24 Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ ′ and TCP phases in single crystal Ni-base superalloy[J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
25 Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy[J]. Acta Mater., 2020, 185: 233
doi: 10.1016/j.actamat.2019.12.014
26 Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure[J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
27 Joubert J M. Crystal chemistry and Calphad modeling of the σ phase[J]. Prog. Mater. Sci., 2008, 53: 528
doi: 10.1016/j.pmatsci.2007.04.001
28 Matsugi K, Murata Y, Morinaga M, et al. An electronic approach to alloy design and its application to Ni-based single-crystal superalloys[J]. Mater. Sci. Eng., 1993, A172: 101
29 Morinaga M, Yukawa H. Recent progress in molecular orbital approach to alloy design[J]. Mater. Sci. Forum, 2004, 449-452: 37
doi: 10.4028/www.scientific.net/MSF.449-452
30 Morinaga M, Yukawa N, Adachi H, et al. New PHACOMP and its applications to alloy design[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 523
31 Moniruzzaman M, Murata Y, Morinaga M, et al. Alloy design of Ni-based single crystal superalloys for the combination of strength and surface stability at elevated temperatures[J]. ISIJ Int., 2003, 43: 1244
doi: 10.2355/isijinternational.43.1244
32 Harada H, Murakami H. Design of Ni-base superalloys[A]. Computational Materials Design[M]. Berlin, Heidelberg: Springer, 1999: 39
33 Yamagata T, Harada H, Nakazawa S, et al. Alloy design for high strength nickel-base single crystal alloys[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 157
34 Zhang, Y, Wang Q, Dong H G, et al. High-temperature structural stabilities of Ni-based single-crystal superalloys Ni-Co-Cr-Mo-W-Al-Ti-Ta with varying Co contents[J]. Acta Metall. Sin. (Eng. Lett.), 2018, 31: 127
35 Chen C, Wang Q, Dong C, et al. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach[J]. Sci. Rep., 2020, 10: 21621
doi: 10.1038/s41598-020-78690-8 pmid: 33303877
36 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
37 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
38 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2007, 122: 448
doi: 10.1016/j.actamat.2016.08.081
39 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
40 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
41 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
42 Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates[J]. Mater. Sci. Eng., 2022, A833: 142550
43 Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys[J]. Acta Mater., 2013, 61: 4237
doi: 10.1016/j.actamat.2013.03.049
44 Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates[J]. Nat. Mater., 2018, 17: 1101
doi: 10.1038/s41563-018-0209-z pmid: 30420670
45 Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method[J]. Mater. Sci. Eng., 2020, A780: 139219
46 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
47 Wang W Z, Jin T, Liu J L, et al. Role of Re and Co on microstructures and γ' coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
[1] LONG Jiangdong, DUAN Huichao, ZHAO Peng, ZHANG Rui, ZHENG Tao, QU Jinglong, CUI Chuanyong, DU Kui. Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151[J]. 金属学报, 2024, 60(2): 167-178.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[6] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[9] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[10] Songsong HU,Lin LIU,Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2016, 52(8): 897-904.
[11] Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. 金属学报, 2016, 52(7): 851-858.
[12] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[13] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[14] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
[15] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
No Suggested Reading articles found!