Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 650-660    DOI: 10.11900/0412.1961.2022.00557
Research paper Current Issue | Archive | Adv Search |
Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys
LI Tianrui1, XU Yuqian1, WU Wenping1, GAN Wenxuan1, YANG Yong1(), LIU Guohuai2, WANG Zhaodong2
1 College of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys. Acta Metall Sin, 2024, 60(5): 650-660.

Download:  HTML  PDF(6121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiAl alloys are considered potential structural materials because of their low density, good high-temperature strength, and creep resistance. However, their low-temperature brittleness and poor high-temperature workability lead to narrow processing windows, which hinder their industrial applications, low pressure turbine blades of high-performance engines and thermal protection system for hypersonic space vehicles, for instance. Extensive studies on alloying and hot mechanical processes have been conducted to control the microstructure and then enhance the inherent ductility of TiAl alloys. Alloying is considered as an effective method to stabilize softening phases or refine grains to optimize microstructural homogeneity and hot workability. Thus, β-solidifying γ-TiAl alloys represented by Ti-(40-45)Al-(2-8)Nb-(1-8)(Cr, Mn, V, Mo)-(0-0.5)(B, C) (atomic fraction, %) alloys were designed. Nb and Mo are added as β-phase stabilizers. Meanwhile, B, C, and Y serve as grain refiners, and they are added to increase the hot workability. However, multiple phases, precipitation, and corresponding phase transformations are introduced, leading to complex flow localization and deformation incompatibility. Therefore, considerable effort has been exerted on thermo-mechanical processing to improve the microstructural homogeneity of these alloys. The interaction among work hardening, recovery, recrystallization, and multiphase transformation under different deformation conditions easily aggravates flow localization and deformation incompatibility, which are inadequately studied. Therefore, a comprehensive understanding of the deformation behavior among multiphase β-solidifying γ-TiAl alloys is necessary. In this work, the uniaxial hot compressions of the β-solidifying γ-TiAl alloys with the nominal compositions of Ti-44Al-5Nb-1Mo and Ti-44Al-5Nb-1Mo-2V-0.2B were conducted. The microstructure of the alloys under different temperatures and strain rates was contrastively studied using SEM-BSE and TEM. The effects of V and B on the microstructural evolutions and deformation mechanisms were analyzed. The results indicated that the addition of V and B contributed considerable differences in microstructure and thermal mechanical sensibility. The Ti-44Al-5Nb-1Mo-2V-0.2B alloy showed high-temperature deformation ability. The deflection of residual lamellae and the formation of shear bands were the main deformation mechanisms, and a nearly lamellar microstructure with a nonuniform grain size was easily generated at 1250oC for the Ti-44Al-5Nb-1Mo alloy. On the contrary, for the Ti-44Al-5Nb-1Mo-2V-0.2B alloy, the deformation-induced lamellae decomposition of lamellar (α/γ) (L(α/γ) for short)→α + γ + β/B2 and γα and the spheroidization or dynamic recrystallization of α and B2 grains could be promoted with the increase of deformation temperatures and decrease of strain rates. Consequently, the microstructural homogeneity was greatly improved. Furthermore, specific deformation conditions of the microstructural control, including a nearly full lamellar and nearly duplex microstructure, were presented in this work.

Key words:  TiAl alloy      (V, B)-alloying      hot deformation      microstructure     
Received:  01 November 2022     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(52301028);National Natural Science Foundation of China(52071065);Fundamental Research Funds for the Central Universities(N2007007);Natural Science Foundation of Anhui Province(2208085QE147);Scientific Research Planning Project of Anhui Province(2022AH050333);Foundation of Anhui University of Technology(QZ202102)
Corresponding Authors:  YANG Yong, Tel: 18955536223, E-mail: yyang@ahut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00557     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/650

Fig.1  Low (a, c) and high (b, d) magnified SEM images of as-homogenized Ti-44Al-5Nb-1Mo (a, b) and Ti-44Al-5Nb-1Mo-2V-0.2B (c, d) alloys
Fig.2  EPMA element mapping analyses of as-homogenized Ti-44Al-5Nb-1Mo-2V-0.2B alloy
(a) secondary electron (SE) image (b) backscattered electron (BSE) image
(c-f) element distribution maps for Nb (c), Mo (d), V (e), and B (f)
Fig.3  TEM images and SAED pattern of the borides in as-homogenized Ti-44Al-5Nb-1Mo-2V-0.2B alloy
(a) morphology of a boride (b) local bright field (BF) image of the boride in Fig.3a
(c) SAED pattern of the boride (d, e) dark field (DF) images of the boride
Fig.4  SEM images of the microstructure for Ti-44Al-5Nb-1Mo alloy deformed at 1 s-1 under different deformation temperatures (Insets show the corresponding high magnified SEM images, DRX—dynamic recrystallized )
(a) 1050oC (b) 1100oC (c) 1200oC (d) 1250oC
Fig.5  SEM images of the microstructure for Ti-44Al-5Nb-1Mo-2V-0.2B alloy deformed at 1 s-1 under different deformation temperatures (Insets show the corresponding high magnified SEM images)
(a) 1050oC (b) 1100oC (c) 1200oC (d) 1250oC
Fig.6  SEM images of the microstructure for Ti-44Al-5Nb-1Mo alloy deformed at different deformation conditions
(a) 1050oC, 1 s-1 (b) 1050oC, 0.1 s-1 (c) 1050oC, 0.01 s-1
(d) 1050oC, 0.001 s-1 (e) 1200oC, 0.1 s-1 (f) 1200oC, 0.01 s-1
Fig.7  SEM images of the microstructure for Ti-44Al-5Nb-1Mo-2V-0.2B alloy deformed at different deformation conditions
(a) 1050oC, 1 s-1 (b) 1050oC, 0.01 s-1 (c) 1050oC, 0.001 s-1
(d) 1200oC, 1 s-1 (e) 1200oC, 0.01 s-1 (f) 1200oC, 0.001 s-1
Fig.8  TEM analyses of the lamellar evolution for Ti-44Al-5Nb-1Mo alloy
(a) 1050oC, 1 s-1 (Insets show the SAED patterns of B2 and γ phase)
(b) high magnified image of square area in Fig.8a (Inset shows the SAED pattern of two-beam image)
(c) 1050oC, 0.01 s-1 (d) 1050oC, 0.001 s-1 (Inset shows the DRX grains)
Fig.9  TEM analyses of the microstructure of Ti-44Al-5Nb-1Mo-2V-0.2B alloy
(a) 1050oC, 1 s-1 (b) 1050oC, 0.01 s-1
(c) 1200oC, 1 s-1, shows the twin boundaries paralleling to the lamellae (Insets show the SAED pattern and corresponding dark field image. T—twinning, γT—twinning of γ phase)
(d) 1200oC, 1 s-1, shows the secondary twins (Insets show the high magnified image of the square area and SAED pattern)
1 Chen Y Y, Ye Y, Sun J F. Present status for rolling TiAl alloy sheet[J]. Acta Metall. Sin., 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
陈玉勇, 叶 园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
2 Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129
3 Huang X, Li Z X, Huang H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. Mater. China, 2011, 30(6): 21
黄 旭, 李臻熙, 黄 浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展, 2011, 30(6): 21
4 Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet[J]. Mater. Lett., 2017, 198: 31
doi: 10.1016/j.matlet.2017.03.173
5 Xu M, Liu G H, Li T R, et al. Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1017
doi: 10.1016/S1003-6326(19)65010-7
6 Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Mater. Sci. Eng., 2019, A764: 138197
7 Guo J M, Liang J L, Li H, et al. Research progress on preparation technology of titanium aluminum alloy and its intermetallic compounds[J]. Multipurp. Util. Miner. Resour., 2022, (3): 1
郭佳明, 梁精龙, 李 慧 等. 钛铝合金及其金属间化合物制备工艺研究进展[J]. 矿产综合利用, 2022, (3): 1
8 Kim Y W. Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J]. Acta Metall. Mater., 1992, 40: 1121
doi: 10.1016/0956-7151(92)90411-7
9 Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng., 2016, A661: 160
10 Wang Q, Chen R R, Yang Y H, et al. Effects of lamellar spacing on microstructural stability and creep properties in β-solidifying γ-TiAl alloy by directional solidification[J]. Mater. Sci. Eng., 2018, A711: 508
11 Niu H Z, Gao T X, Sun Q Q, et al. Prior particle boundaries and microstructural homogenization of a β-solidifying γ-TiAl alloy fabricated from prealloyed powder[J]. Mater. Sci. Eng., 2018, A737: 151
12 Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition[J]. Mater. Sci. Eng., 2018, A715: 41
13 Ye T, Song L, Liang Y F, et al. Precipitation behavior of ωo phase and texture evolution of a forged Ti-45Al-8.5Nb-(W, B, Y) alloy during creep[J]. Mater. Charact., 2018, 136: 41
doi: 10.1016/j.matchar.2017.12.007
14 Guo B Q, Aranas C, Foul A, et al. Effect of multipass deformation at elevated temperatures on the flow behavior and microstructural evolution in Ti-6Al-4V[J]. Mater. Sci. Eng., 2018, A729: 119
15 Schnabel J E, Bargmann S, Paul J D H, et al. Work hardening and recovery in fully lamellar TiAl: Relative activity of deformation systems[J]. Philos. Mag., 2019, 99: 148
doi: 10.1080/14786435.2018.1532121
16 Gu X, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scr. Mater., 2021, 192: 55
doi: 10.1016/j.scriptamat.2020.10.010
17 Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy[J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
18 Zhao E T, Niu H Z, Zhang S Z, et al. Microstructural control and mechanical properties of a β-solidified γ-TiAl alloy Ti-46Al-2Nb-1.5V-1Mo-Y[J]. Mater. Sci. Eng., 2017, A701: 1
19 Zhang J H, Huang B Y, Zhou K C, et al. Pack rolling of TiAl based alloy[J]. Chin. J. Nonferrous Met., 2001, 11: 1055
张俊红, 黄伯云, 周科朝 等. 包套轧制制备TiAl基合金板材[J]. 中国有色金属学报, 2001, 11: 1055
20 Ouadah O, Merad G, Abdelkader H S. Effect of co-alloying elements on the structural stability, elastic, ductility and thermodynamic properties of TiAl intermetallic compound[J]. Solid State Commun., 2021, 337: 114438
doi: 10.1016/j.ssc.2021.114438
21 Yang R, Rahman K M, Rakhymberdiyev A N, et al. Mechanical behaviour of Ti-Nb-Hf alloys[J]. Mater. Sci. Eng., 2019, A740-741: 398
22 Ding H S, Zhang H L, Wang Q, et al. Effect of Y2O3 particles on the fracture toughness of directionally solidified TiAl-based alloys[J]. Mater. Sci. Eng., 2017, A703: 108
23 Niu H Z, Tong R L, Chen X J, et al. Rapid decomposition of lamellar microstructure and enhanced hot workability of an as-cast triphase Ti-45Al-6Nb-1Mo alloy via one-step alpha-extrusion & annealing[J]. Mater. Sci. Eng., 2021, A801: 140438
24 Lapin J, Pelachová T, Bajana O. High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. J. Alloys Compd., 2019, 797: 754
doi: 10.1016/j.jallcom.2019.05.136
25 Jin Y G, Wang J N, Yang J, et al. Microstructure refinement of cast TiAl alloys by β solidification[J]. Scr. Mater., 2004, 51: 113
doi: 10.1016/j.scriptamat.2004.03.044
26 Lapin J, Štamborská M, Pelachová T, et al. Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. Mater. Sci. Eng., 2018, A721: 1
27 Jiang H T, Tian S W, Guo W Q, et al. Hot deformation behavior and deformation mechanism of two TiAl-Mo alloys during hot compression[J]. Mater. Sci. Eng., 2018, A719: 104
28 Song L, Wang L, Oehring M, et al. Evidence for deformation twinning of the D019-α2 phase in a high Nb containing TiAl alloy[J]. Intermetallics, 2019, 109: 91
doi: 10.1016/j.intermet.2019.03.014
[1] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[2] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[3] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[4] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[5] LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. 金属学报, 2024, 60(5): 585-604.
[6] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[7] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[8] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[9] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[10] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[11] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[12] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[13] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[14] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[15] CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 2024, 60(1): 1-15.
No Suggested Reading articles found!