|
|
Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel |
WANG Jianqiang1,2,3, LIU Weifeng4, LIU Sheng2,3, XU Bin2,3, SUN Mingyue2,3( ), LI Dianzhong3 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4 Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135, China |
|
Cite this article:
WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel. Acta Metall Sin, 2024, 60(5): 616-626.
|
Abstract Compared to second- and third-generation nuclear power systems, the Generation IV fission and future fusion reactors have higher service temperatures and irradiation doses, as well as harsher corrosive conditions and complex alternating loads. The structural materials for advanced reactors need to be researched and developed further. The oxide dispersion strengthened (ODS) steel has excellent high-temperature performance and irradiation resistance and is considered a promising structural material for advanced nuclear power systems. To reveal the effect of aging on microstructure and mechanical properties of ODS steel at near-service temperatures, the evolution of carbide M23C6 and nano-oxide particles (NPs) as well as the changes in the mechanical properties of 9Cr ODS steel after aging at 700oC for varying durations were studied using SEM, TEM, and tensile testing. M23C6 rapidly precipitated along grain boundaries, gradually aggregated, and grew during early aging (≤ 200 h). While the NPs showed no noticeable change. During the midstages of aging (200 and 1000 h), NPs and carbides grew stably. In the later stages of aging (2000 and 3000 h), carbide particles grew to the micron scale. The average size and number density of the NPs tended to be stable. Compared to the initial 9Cr ODS steel, the growth rate of the average size was 19.7%, and the reduction rate of the number density was 27.1%. Dislocation cells and recovered subgrains appeared within some grains because of the pinning effect of NPs on continuous proliferation dislocations. The tensile strength rapidly decreased at the initial stages of aging. In the intermediate and later stages of aging, although the average size of the NPs increased and the number density decreased, its pinning effect was still prominent. Continuous proliferation dislocations were observed in the matrix, so the tensile strength remained stable. Furthermore, the tensile elongation was low during aging time of 1000 and 2000 h.
|
Received: 01 November 2022
|
|
Fund: National Key Research and Development Program of China(2018YFA0702900);National Natural Science Foundation of China(52173305);National Natural Science Foundation of China(52101061);National Natural Science Foundation of China(52233017);National Natural Science Foundation of China(52203384);China Postdoctoral Science Foundation(2020M681004);China Postdoctoral Science Foundation(2021M703276);IMR Innovation Foundation(2022-PY12);LingChuang Research Project of China National Nuclear Corporation;Youth Innovation Promotion Association, CAS |
Corresponding Authors:
SUN Mingyue, professor, Tel: 13604076598, E-mail: mysun@imr.ac.cn
|
1 |
Liu C L. Development status and trend of global nuclear power[J]. Global Sci., Technol. Econ. Outlook, 2017, 32(5): 67
|
|
刘春龙. 全球核电发展现状及趋势[J]. 全球科技经济瞭望, 2017, 32(5): 67
|
2 |
Rong J, Liu Z. Development and prospect of advanced nuclear energy technology[J]. At. Energy Sci. Technol., 2020, 54: 1638
|
|
荣 健, 刘 展. 先进核能技术发展与展望[J]. 原子能科学技术, 2020, 54: 1638
|
3 |
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
|
4 |
Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science[J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
|
5 |
Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. J. Nucl. Mater., 2008, 383: 189
doi: 10.1016/j.jnucmat.2008.08.044
|
6 |
Kurtz R J, Odette G R. Structural Alloys for Nuclear Energy Applications[M]. Amsterdam: Elsevier, 2019: 51
|
7 |
Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nucl. Fusion, 2017, 57: 092005
|
8 |
Massey C P, Hoelzer D T, Edmondson P D, et al. Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep[J]. Scr. Mater., 2019, 170: 134
doi: 10.1016/j.scriptamat.2019.06.001
|
9 |
Stan T, Wu Y, Ciston J, et al. Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy[J]. Acta Mater., 2020, 183: 484
doi: 10.1016/j.actamat.2019.10.045
|
10 |
Odette G R. Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications[J]. JOM, 2014, 66: 2427
doi: 10.1007/s11837-014-1207-5
|
11 |
Yvon P, Le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: challenges and the path forward[J]. Nucl. Eng. Des., 2015, 294: 161
doi: 10.1016/j.nucengdes.2015.09.015
|
12 |
Ukai S, Ohtsuka S, Kaito K, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 357
|
13 |
Peng Y Y, Yu L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
|
|
彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
|
14 |
Zhang G M, Zhou Z J, Mo K, et al. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy[J]. J. Nucl. Mater., 2019, 522: 212
doi: 10.1016/j.jnucmat.2019.05.023
|
15 |
Li S F, Zhou Z J, Wang P H, et al. Long-term thermal-aging stability of a 16Cr-oxide dispersion strengthened ferritic steel at 973 K[J]. Mater. Design, 2016, 90: 318
|
16 |
Oksiuta Z, Lewandowska M, Kurzydłowski K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mech. Mater., 2013, 67: 15
doi: 10.1016/j.mechmat.2013.07.006
|
17 |
Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study[J]. J. Nucl. Mater., 2017, 492: 142
doi: 10.1016/j.jnucmat.2017.05.027
|
18 |
Sandim M J R, Filho I R S, Bredda E H, et al. Short communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350oC”[J]. J. Nucl. Mater., 2017, 484: 283
doi: 10.1016/j.jnucmat.2016.12.025
|
19 |
Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel[J]. Mater. Sci. Eng., 2011, A528: 1442
|
20 |
Cunningham N, Wu Y, Klingensmith D, et al. On the remarkable thermal stability of nanostructured ferritic alloys[J]. Mater. Sci. Eng., 2014, A613: 296
|
21 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
|
22 |
Zinkle S J. Challenges in developing materials for fusion technology—Past, present and future[J]. Fusion Sci. Technol., 2013, 64: 65
doi: 10.13182/FST13-631
|
23 |
Wang J Q, Liu S, Xu B, et al. Microstructural stability of a 9Cr oxide dispersion strengthened alloy under thermal aging at high temperatures[J]. J. Alloys Compd., 2023, 932: 167691
doi: 10.1016/j.jallcom.2022.167691
|
24 |
Yakel H L. Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr23 - x Fe x )C6 with x = 0, 0.74, 1.70, 4.13 and 7.36[J]. Acta Crystallogr. Sect., 1987, 43B: 230
|
25 |
Becker K, Ebert F. Die kristallstruktur einiger binärer carbide und nitride[J]. Z. Physik, 1925, 31: 268
doi: 10.1007/BF02980580
|
26 |
Godec M, Skobir Balantič D A. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures[J]. Sci. Rep., 2016, 6: 29734
doi: 10.1038/srep29734
pmid: 27406340
|
27 |
Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel[J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
|
28 |
Liu X, Miao Y B, Li M M, et al. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations[J]. Scr. Mater., 2018, 148: 33
doi: 10.1016/j.scriptamat.2018.01.018
|
29 |
Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
|
30 |
Chen L Z, Li S F, Liao L, et al. Microstructure, tensile properties and thermal stability of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2019, 40(11): 124
|
|
陈灵芝, 李少夫, 廖 璐 等. 14Cr-ODS钢的显微组织和拉伸性能及热稳定性[J]. 材料热处理学报, 2019, 40(11): 124
|
31 |
Zhang Z P, Shi Q Z, Zhao Q, et al. Thermal aging behavior of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2020, 45(6): 153
|
|
张哲平, 史庆志, 赵 倩 等. 14Cr-ODS钢的热时效行为[J]. 材料热处理学报, 2020, 45(6): 153
|
32 |
Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
|
33 |
Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metall. Trans., 1991, 22A: 2225
|
34 |
Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957[J]. J. Nucl. Mater., 2004, 329-333: 338
doi: 10.1016/j.jnucmat.2004.04.085
|
35 |
Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A783: 139292
|
36 |
Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
|
37 |
Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
|
38 |
Primig S, Leitner H, Knabl W, et al. Textural evolution during dynamic recovery and static recrystallization of molybdenum[J]. Metall. Mater. Trans., 2012, 43A: 4794
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|