Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 616-626    DOI: 10.11900/0412.1961.2022.00558
Research paper Current Issue | Archive | Adv Search |
Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel
WANG Jianqiang1,2,3, LIU Weifeng4, LIU Sheng2,3, XU Bin2,3, SUN Mingyue2,3(), LI Dianzhong3
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135, China
Cite this article: 

WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel. Acta Metall Sin, 2024, 60(5): 616-626.

Download:  HTML  PDF(5575KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Compared to second- and third-generation nuclear power systems, the Generation IV fission and future fusion reactors have higher service temperatures and irradiation doses, as well as harsher corrosive conditions and complex alternating loads. The structural materials for advanced reactors need to be researched and developed further. The oxide dispersion strengthened (ODS) steel has excellent high-temperature performance and irradiation resistance and is considered a promising structural material for advanced nuclear power systems. To reveal the effect of aging on microstructure and mechanical properties of ODS steel at near-service temperatures, the evolution of carbide M23C6 and nano-oxide particles (NPs) as well as the changes in the mechanical properties of 9Cr ODS steel after aging at 700oC for varying durations were studied using SEM, TEM, and tensile testing. M23C6 rapidly precipitated along grain boundaries, gradually aggregated, and grew during early aging (≤ 200 h). While the NPs showed no noticeable change. During the midstages of aging (200 and 1000 h), NPs and carbides grew stably. In the later stages of aging (2000 and 3000 h), carbide particles grew to the micron scale. The average size and number density of the NPs tended to be stable. Compared to the initial 9Cr ODS steel, the growth rate of the average size was 19.7%, and the reduction rate of the number density was 27.1%. Dislocation cells and recovered subgrains appeared within some grains because of the pinning effect of NPs on continuous proliferation dislocations. The tensile strength rapidly decreased at the initial stages of aging. In the intermediate and later stages of aging, although the average size of the NPs increased and the number density decreased, its pinning effect was still prominent. Continuous proliferation dislocations were observed in the matrix, so the tensile strength remained stable. Furthermore, the tensile elongation was low during aging time of 1000 and 2000 h.

Key words:  9Cr ODS steel      aging      carbide      nano-oxide particle      mechanical property     
Received:  01 November 2022     
ZTFLH:  TG142  
Fund: National Key Research and Development Program of China(2018YFA0702900);National Natural Science Foundation of China(52173305);National Natural Science Foundation of China(52101061);National Natural Science Foundation of China(52233017);National Natural Science Foundation of China(52203384);China Postdoctoral Science Foundation(2020M681004);China Postdoctoral Science Foundation(2021M703276);IMR Innovation Foundation(2022-PY12);LingChuang Research Project of China National Nuclear Corporation;Youth Innovation Promotion Association, CAS
Corresponding Authors:  SUN Mingyue, professor, Tel: 13604076598, E-mail: mysun@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00558     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/616

Fig.1  SEM image (a), low magnified TEM image (b), SAED pattern of M23C6 (c), and high magnified TEM image (d) of as-HIPed 9Cr ODS steel (HIP—hot isostatic pressure)
Fig.2  SEM images of 9Cr ODS steel aged at 700oC for 20 h (a), 50 h (b), 200 h (c), 1000 h (d), 2000 h (e), and 3000 h (f)
Fig.3  STEM images of 9Cr ODS steel aged at 700oC for 20 h (a), 200 h (b), 1000 h (c), 2000 h (d), and 3000 h (e); and histogram of the average size of M23C6 at different aging time (f)
Fig.4  STEM image (a) and EDS mappings (b) of 9Cr ODS steel aged at 700oC for 1000 h, and SAED pattern of particle A in Fig.4a (c)
Fig.5  Morphologies of nano-oxides and their surrounding dislocations in 9Cr ODS steel aged at 700oC for 20 h (a), 50 h (b), 200 h (c), 1000 h (d), 2000 h (e), and 3000 h (f)
Fig.6  Size distributions of nano-oxides in 9Cr ODS steel aged at 700oC for 20 h (a), 50 h (b), 200 h (c), 1000 h (d), 2000 h (e), and 3000 h (f)
Fig.7  Engineering stress-strain curves (a) and mechanical properties (b) of 9Cr ODS steel aged at 700oC for different time (YS—yield strength, UTS—ultimate tensile strength, TE—tensile elongation)
Fig.8  Tensile fracture morphologies (at room temperature) of as-HIPed 9Cr ODS steel (a); and aged at 700oC for 50 h (b), 200 h (c), 1000 h (d), and 3000 h (e, f)
PointFeCrWCTiY
P140.8544.8411.302.950.060.00
P265.8030.482.920.680.120.01
P340.9947.3110.161.330.210.00
Table 1  EDS results of particles P1-P3 in Fig.8f (mass fraction / %)
Fig.9  Variations of average size (a) and number density (b) of nano-oxides in as-HIPed 9Cr ODS steel and aged at 700oC for different time
Fig.10  Schematics of microstructure evolution in 9Cr ODS steel aged at 700oC
(a) as-HIPed state (b) early stage of aging (c) midstage of aging (d) later stage of aging
1 Liu C L. Development status and trend of global nuclear power[J]. Global Sci., Technol. Econ. Outlook, 2017, 32(5): 67
刘春龙. 全球核电发展现状及趋势[J]. 全球科技经济瞭望, 2017, 32(5): 67
2 Rong J, Liu Z. Development and prospect of advanced nuclear energy technology[J]. At. Energy Sci. Technol., 2020, 54: 1638
荣 健, 刘 展. 先进核能技术发展与展望[J]. 原子能科学技术, 2020, 54: 1638
3 Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
4 Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science[J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
5 Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. J. Nucl. Mater., 2008, 383: 189
doi: 10.1016/j.jnucmat.2008.08.044
6 Kurtz R J, Odette G R. Structural Alloys for Nuclear Energy Applications[M]. Amsterdam: Elsevier, 2019: 51
7 Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nucl. Fusion, 2017, 57: 092005
8 Massey C P, Hoelzer D T, Edmondson P D, et al. Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep[J]. Scr. Mater., 2019, 170: 134
doi: 10.1016/j.scriptamat.2019.06.001
9 Stan T, Wu Y, Ciston J, et al. Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy[J]. Acta Mater., 2020, 183: 484
doi: 10.1016/j.actamat.2019.10.045
10 Odette G R. Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications[J]. JOM, 2014, 66: 2427
doi: 10.1007/s11837-014-1207-5
11 Yvon P, Le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: challenges and the path forward[J]. Nucl. Eng. Des., 2015, 294: 161
doi: 10.1016/j.nucengdes.2015.09.015
12 Ukai S, Ohtsuka S, Kaito K, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 357
13 Peng Y Y, Yu L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
14 Zhang G M, Zhou Z J, Mo K, et al. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy[J]. J. Nucl. Mater., 2019, 522: 212
doi: 10.1016/j.jnucmat.2019.05.023
15 Li S F, Zhou Z J, Wang P H, et al. Long-term thermal-aging stability of a 16Cr-oxide dispersion strengthened ferritic steel at 973 K[J]. Mater. Design, 2016, 90: 318
16 Oksiuta Z, Lewandowska M, Kurzydłowski K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mech. Mater., 2013, 67: 15
doi: 10.1016/j.mechmat.2013.07.006
17 Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study[J]. J. Nucl. Mater., 2017, 492: 142
doi: 10.1016/j.jnucmat.2017.05.027
18 Sandim M J R, Filho I R S, Bredda E H, et al. Short communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350oC”[J]. J. Nucl. Mater., 2017, 484: 283
doi: 10.1016/j.jnucmat.2016.12.025
19 Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel[J]. Mater. Sci. Eng., 2011, A528: 1442
20 Cunningham N, Wu Y, Klingensmith D, et al. On the remarkable thermal stability of nanostructured ferritic alloys[J]. Mater. Sci. Eng., 2014, A613: 296
21 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
22 Zinkle S J. Challenges in developing materials for fusion technology—Past, present and future[J]. Fusion Sci. Technol., 2013, 64: 65
doi: 10.13182/FST13-631
23 Wang J Q, Liu S, Xu B, et al. Microstructural stability of a 9Cr oxide dispersion strengthened alloy under thermal aging at high temperatures[J]. J. Alloys Compd., 2023, 932: 167691
doi: 10.1016/j.jallcom.2022.167691
24 Yakel H L. Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr23 - x Fe x )C6 with x = 0, 0.74, 1.70, 4.13 and 7.36[J]. Acta Crystallogr. Sect., 1987, 43B: 230
25 Becker K, Ebert F. Die kristallstruktur einiger binärer carbide und nitride[J]. Z. Physik, 1925, 31: 268
doi: 10.1007/BF02980580
26 Godec M, Skobir Balantič D A. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures[J]. Sci. Rep., 2016, 6: 29734
doi: 10.1038/srep29734 pmid: 27406340
27 Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel[J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
28 Liu X, Miao Y B, Li M M, et al. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations[J]. Scr. Mater., 2018, 148: 33
doi: 10.1016/j.scriptamat.2018.01.018
29 Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
30 Chen L Z, Li S F, Liao L, et al. Microstructure, tensile properties and thermal stability of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2019, 40(11): 124
陈灵芝, 李少夫, 廖 璐 等. 14Cr-ODS钢的显微组织和拉伸性能及热稳定性[J]. 材料热处理学报, 2019, 40(11): 124
31 Zhang Z P, Shi Q Z, Zhao Q, et al. Thermal aging behavior of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2020, 45(6): 153
张哲平, 史庆志, 赵 倩 等. 14Cr-ODS钢的热时效行为[J]. 材料热处理学报, 2020, 45(6): 153
32 Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
33 Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metall. Trans., 1991, 22A: 2225
34 Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957[J]. J. Nucl. Mater., 2004, 329-333: 338
doi: 10.1016/j.jnucmat.2004.04.085
35 Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A783: 139292
36 Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
37 Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
38 Primig S, Leitner H, Knabl W, et al. Textural evolution during dynamic recovery and static recrystallization of molybdenum[J]. Metall. Mater. Trans., 2012, 43A: 4794
[1] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[2] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[3] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[4] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[5] YU Hua, LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control[J]. 金属学报, 2024, 60(4): 464-472.
[6] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[7] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[8] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[9] HOU Zhiyuan, LIU Weifeng, XU Bin, SUN Mingyue, SHI Jing, REN Shaofei. Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation[J]. 金属学报, 2024, 60(1): 57-68.
[10] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[11] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[12] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[13] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[15] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
No Suggested Reading articles found!