|
|
High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition |
WANG Jinxin1, YAO Meiyi1( ), LIN Yuchen1, CHEN Liutao2, GAO Changyuan2, XU Shitong1, HU Lijuan1, XIE Yaoping1, ZHOU Bangxin1 |
1 Institute of Materials, Shanghai University, Shanghai 200072, China 2 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China |
|
Cite this article:
WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition. Acta Metall Sin, 2024, 60(5): 670-680.
|
Abstract Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear reactors due to their properties such as small thermal neutron absorption cross section, good corrosion resistance to high-temperature steam and high-pressure water, excellent mechanical properties and good compatibility with UO2. However, under loss of coolant accident (LOCA) conditions, zirconium alloy undergoes high-temperature steam oxidation and loses its structural integrity, threatening nuclear reactor safety. With the development of the nuclear power industry, increasing demands are put forward for zirconium alloys to withstand higher burnup; hence, studying their behavior under high-temperature steam oxidation during simulated LOCA is crucial. Fe is a significant alloying element in zirconium alloys, and its addition can improve their properties. Zr-1Nb alloy is a commercial alloy with excellent corrosion resistance, and adding an appropriate amount of Fe (0.1%-0.4%; mass fraction) can further enhance the corrosion resistance of the Zr-1Nb alloy under normal operating conditions. However, the effect of adding Fe on the high-temperature steam oxidation behavior of the Zr-1Nb alloy is unclear. Therefore, the oxidation behavior of Zr-1Nb-xFe (x = 0, 0.05, 0.2, and 0.4; mass fraction, %) alloys were investigated in steam at 800, 900, 1000, 1100, and 1200oC for 3600 s using a simultaneous thermal analyzer with a steam generator. The microstructure and microhardness of the samples before and after oxidation were analyzed using a metallographic microscope and Vickers hardness tester. The results revealed that adding Fe generally reduced the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys from 800oC to 1100oC for 3600 s. The effect of Fe contents on the oxidation behavior of the Zr-1Nb alloy was complex and did not show a consistent change with increasing Fe content. When oxidized at 1200oC for 3600 s, the difference in Fe content had hardly any effect on the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys. As the oxidation temperature increased, the oxidation kinetics of the four alloys generally changed from a parabolic to a linear pattern, even occurring to multiple transitions, which was closely related to the change process of the α↔β phase for the zirconium matrix and the monoclinic (m) ↔ tetragonal (t) phase for ZrO2.
|
Received: 18 December 2022
|
|
Fund: National Natural Science Foundation of China(51871141) |
Corresponding Authors:
YAO Meiyi, professor, Tel: 13818897458, E-mail: yaomeiyi@shu.edu.cn
|
1 |
Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys[J]. Mater. China, 2022, 41: 354
|
|
贾豫婕, 林希衡, 邹小伟 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41: 354
|
2 |
Liu J Z. Nuclear Structural Materials[M]. Beijing: Chemical Industry Press, 2007: 5
|
|
刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5
|
3 |
Wang R S, Geng J Q, Weng L K, et al. Zirconium alloy cladding be-haviors under LOCA condition[J]. Mater. Rev., 2011, 25(suppl.2) :501
|
|
王荣山, 耿建桥, 翁立奎 等. LOCA工况下锆合金包壳的行为概述[J]. 材料导报, 2011, 25(): 501
|
4 |
Kim J H, Lee M H, Choi B K, et al. Embrittlement behavior of zircaloy-4 cladding during oxidation and water quench[J]. Nucl. Eng. Des., 2005, 235: 67
doi: 10.1016/j.nucengdes.2004.08.030
|
5 |
Gao Y, Yang M X, Hu Y, et al. Effect of cooling rate on residual plasticity of homemade ZIRLO alloy after LOCA[J]. Atomic. Energy Sci. Technol., 2019, 53: 1310
|
|
高 阳, 杨明馨, 胡 勇 等. 冷却速率对国产ZIRLO合金LOCA后残余塑性的影响[J]. 原子能科学技术, 2019, 53: 1310
|
6 |
Grosse M, Stuckert J, Steinbrück M, et al. Secondary hydriding during LOCA—Results from the QUENCH-L0 test[J]. J. Nucl. Mater., 2012, 420: 575
doi: 10.1016/j.jnucmat.2011.11.045
|
7 |
Shishov V N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation[J]. J. ASTM Int., 2010, 7: 1
|
8 |
Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys[J]. Acta. Metall Sin., 2011, 47: 1216
doi: 10.3724/SP.J.1037.2011.00211
|
|
邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为[J]. 金属学报, 2011, 47: 1216
|
9 |
Gao W, Zhang X, Wang Z P, et al. Study of oxidation behavior of M5 and ZIRLO zirconium alloy in high temperature vapor[J]. J. Xi'an Technol. Univ., 2016, 36: 473
|
|
高 巍, 张 娴, 王正品 等. M5和ZIRLO合金高温水蒸气氧化行为研究[J]. 西安工业大学学报, 2016, 36: 473
|
10 |
Huang W. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-1Nb-xM alloys[D]. Shanghai: Shanghai University, 2020
|
|
黄 微. Zr-1Nb-xM合金的常规腐蚀行为及模拟LOCA下的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2020
|
11 |
Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200oC[J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
|
12 |
Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200oC in steam[J]. Nucl. Power Eng., 2010, 31(2): 85
|
|
刘彦章, 邱 军, 刘 欣 等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程, 2010, 31(2): 85
|
13 |
Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA)[J]. Atomic Energy Sci Technol., 1993, 27: 376
|
|
马树春, 孙源珍, 陈望春 等. PWR失水事故工况下燃料包壳与水蒸汽反应研究[J]. 原子能科学技术, 1993, 27: 376
|
14 |
Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy[J]. Rare Met. Mater. Eng., 2022, 51: 1837
|
|
张佳楠, 姚美意, 查学鹏 等. 添加Nb对Zr-0.75Sn-0.35Fe-0.15Cr合金高温蒸汽氧化行为的影响[J]. 稀有金属材料与工程, 2022, 51: 1837
|
15 |
Qu C. Oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in high-temperature steam[D]. Shanghai: Shanghai University, 2019
|
|
瞿 忱. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2019
|
16 |
Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al. Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties[A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2011: 1
|
17 |
Kim H G, Park J Y, Jeong Y H. Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
doi: 10.1016/j.jnucmat.2005.04.061
|
18 |
Wang R S, Weng L K, Zhang Y W, et al. Development of research on corrosion resistance of Zr-Nb alloy[J]. Mater. Rep., 2011, 25(13): 10
|
|
王荣山, 翁立奎, 张晏玮 等. Zr-Nb合金耐腐蚀性能的研究进展[J]. 材料导报, 2011, 25(13): 105
|
19 |
Toffolon-Masclet C, Barbéris P, Brachet J C, et al. Study of Nb and Fe precipitation in α-phase temperature range (400 to 500℃) in Zr-Nb-(Fe-Sn) alloys[A]. Zirconium in the Nuclear Industry: 14th International Symposium[C]. Stockholm, Sweden: American Society for Testing and Materials, 2005: 1
|
20 |
Wang R S, Weng L K, Zhang Y W, et al. Effect of Fe on the precipitate characteristics and out-of-pile corrosion behavior of Zr-1Nb-xFe alloys[J]. Mater. Sci. Forum, 2013, 743-744: 1
doi: 10.4028/www.scientific.net/MSF
|
21 |
Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs[A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2000: 609
|
22 |
Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests[A]. Zirconium in the nuclear industry: 11th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 1996: 850
|
23 |
Li M S. High Temperature Corrosion of Metals[M]. Beijing: Metallurgical Industry Press, 2001: 36
|
|
李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 36
|
24 |
Wang D, Zhang Y P, Wu S H, et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. J. Nucl. Mater., 2022, 561: 153564
doi: 10.1016/j.jnucmat.2022.153564
|
25 |
Négyesi M, Burda J, Bláhová O, et al. The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding[J]. J. Nucl. Mater., 2011, 416: 288
doi: 10.1016/j.jnucmat.2011.06.013
|
26 |
Li C B, Song Q, Yang X W, et al. Experimental investigation of the phase relations in the Fe-Zr-Y ternary system[J]. Materials, 2022, 15: 593
doi: 10.3390/ma15020593
|
27 |
Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations[J]. Comput. Mater. Sci., 2015, 98: 112
doi: 10.1016/j.commatsci.2014.10.052
|
28 |
Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials[J]. J. Nucl. Mater., 2014, 452: 285
doi: 10.1016/j.jnucmat.2014.05.023
|
29 |
Hou X M, Chou K C. Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. J. Alloys. Compd., 2011, 509: 2395
doi: 10.1016/j.jallcom.2010.11.028
|
30 |
Nagase F, Otomo T, Uetsuka H. Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1,573 K[J]. J. Nucl. Sci. Technol., 2003, 40: 213
doi: 10.1080/18811248.2003.9715351
|
31 |
Yan Y, Garrison B E, Smith T S, et al. Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based E110 alloy cladding tubes[J]. MRS Adv., 2017, 2: 1203
doi: 10.1557/adv.2016.641
|
32 |
Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O[J]. J. Am. Ceram. Soc., 1977, 60: 341
doi: 10.1111/jace.1977.60.issue-7-8
|
33 |
Yao M Y, Luan B F. Zirconium alloys used in water-cooled reactors[A]. Nuclear Reactor Materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 524
|
|
姚美意, 栾佰峰. 水冷核反应堆用锆合金[A]. 核反应堆材料[M].上海: 上海交通大学出版社, 2021: 524
|
34 |
Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Adv. Eng. Sci., 2021, 53(6): 204
|
|
马明星, 朱达川, 王志新 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204
|
35 |
Uetsuka H, Furuta T, Kawasaki S. Embrittlement of Zircaloy-4 due to oxidation in environment of stagnant steam[J]. J. Nucl. Sci. Technol., 1982, 19: 158
doi: 10.1080/18811248.1982.9734128
|
36 |
Zha X P. Oxidation behavior and mechanical properties of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloy under simulated loss of coolant accident conditions[D]. Shanghai: Shanghai University, 2022: 61
|
|
查学鹏. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在模拟失水事故下的氧化行为和力学性能研究[D]. 上海: 上海大学, 2022: 61
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|