Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 670-680    DOI: 10.11900/0412.1961.2022.00632
Research paper Current Issue | Archive | Adv Search |
High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition
WANG Jinxin1, YAO Meiyi1(), LIN Yuchen1, CHEN Liutao2, GAO Changyuan2, XU Shitong1, HU Lijuan1, XIE Yaoping1, ZHOU Bangxin1
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China
Cite this article: 

WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition. Acta Metall Sin, 2024, 60(5): 670-680.

Download:  HTML  PDF(4313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear reactors due to their properties such as small thermal neutron absorption cross section, good corrosion resistance to high-temperature steam and high-pressure water, excellent mechanical properties and good compatibility with UO2. However, under loss of coolant accident (LOCA) conditions, zirconium alloy undergoes high-temperature steam oxidation and loses its structural integrity, threatening nuclear reactor safety. With the development of the nuclear power industry, increasing demands are put forward for zirconium alloys to withstand higher burnup; hence, studying their behavior under high-temperature steam oxidation during simulated LOCA is crucial. Fe is a significant alloying element in zirconium alloys, and its addition can improve their properties. Zr-1Nb alloy is a commercial alloy with excellent corrosion resistance, and adding an appropriate amount of Fe (0.1%-0.4%; mass fraction) can further enhance the corrosion resistance of the Zr-1Nb alloy under normal operating conditions. However, the effect of adding Fe on the high-temperature steam oxidation behavior of the Zr-1Nb alloy is unclear. Therefore, the oxidation behavior of Zr-1Nb-xFe (x = 0, 0.05, 0.2, and 0.4; mass fraction, %) alloys were investigated in steam at 800, 900, 1000, 1100, and 1200oC for 3600 s using a simultaneous thermal analyzer with a steam generator. The microstructure and microhardness of the samples before and after oxidation were analyzed using a metallographic microscope and Vickers hardness tester. The results revealed that adding Fe generally reduced the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys from 800oC to 1100oC for 3600 s. The effect of Fe contents on the oxidation behavior of the Zr-1Nb alloy was complex and did not show a consistent change with increasing Fe content. When oxidized at 1200oC for 3600 s, the difference in Fe content had hardly any effect on the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys. As the oxidation temperature increased, the oxidation kinetics of the four alloys generally changed from a parabolic to a linear pattern, even occurring to multiple transitions, which was closely related to the change process of the αβ phase for the zirconium matrix and the monoclinic (m) ↔ tetragonal (t) phase for ZrO2.

Key words:  zirconium alloy      loss of coolant accident (LOCA)      high-temperature steam oxidation      microstructure      phase transition     
Received:  18 December 2022     
ZTFLH:  TL341  
Fund: National Natural Science Foundation of China(51871141)
Corresponding Authors:  YAO Meiyi, professor, Tel: 13818897458, E-mail: yaomeiyi@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00632     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/670

AlloyNbFeZr
0Fe0.940-Bal.
0.05Fe0.9380.079Bal.
0.2Fe0.9470.256Bal.
0.4Fe0.9520.420Bal.
Table 1  Chemical compositions of Zr-1Nb-xFe alloys
Fig.1  Oxidation kinetics curves of four alloys oxidized in 800oC (a), 900oC (b), 1000oC (c), 1100oC (d), and 1200oC (e) steam for 3600 s
T / oCAlloyTransition point / slnKnn
8000Fe-0.320.56
0.05Fe--0.800.72
0.2Fe-0.340.58
0.4Fe-0.330.58
9000Fe-1.220.52
0.05Fe-1.290.53
0.2Fe-1.140.53
0.4Fe-0.700.60
10000Fe-1.600.56
0.05Fe679-0.020.78
0.011.08
12670.110.61
0.2Fe-0.960.67
0.4Fe-1.600.56
11000Fe-0.080.88
0.05Fe--0.590.98
0.2Fe-1.490.72
0.4Fe1533-0.090.96
-0.020.61
12000Fe18770.470.93
-0.010.61
0.05Fe19830.470.93
0.010.60
0.2Fe20750.490.93
0.070.60
0.4Fe23480.560.92
0.020.58
Table 2  Oxidation kinetic parameters of four alloys oxidized in 800-1200oC steam for 3600 s
T / oCF0.05F0.2F0.4
80022.3020.4519.11
90019.094.0610.44
100024.7122.050.31
110019.4510.739.03
1200-1.52-2.36-1.00
Table 3  Compared to 0Fe alloy, the percentages of weight gain change for 0.05Fe, 0.2Fe, and 0.4Fe alloys oxidized in 800-1200oC steam for 3600 s
Fig.2  Cross-sectional OM images of 0Fe (a1, a2), 0.05Fe (b1, b2), 0.2Fe (c1, c2), and 0.4Fe (d1, d2) alloys oxidized in 800oC steam for 3600 s (Figs.2a2-d2 are the enlarged images of middle area of Figs.2a1-d1, respectively)
Fig.3  Cross-sectional OM images of 0Fe (a1, a2), 0.05Fe (b1, b2), 0.2Fe (c1, c2), and 0.4Fe (d1, d2) alloys oxidized in 900oC steam for 3600 s (Figs.3a2-d2 are the enlarged images of middle area of Figs.3a1-d1, respectively)
Fig.4  Cross-sectional OM images of 0Fe (a1-a3), 0.05Fe (b1-b3), 0.2Fe (c1-c3), and 0.4Fe (d1-d3) alloys oxidized in 1000oC (a1-d1), 1100oC (a2-d2), and 1200oC (a3-d3) steam for 3600 s
Fig.5  Layer thickness ratios of four alloys oxidized in 800oC (a), 900oC (b), 1000oC (c), 1100oC (d), and 1200oC (e) steam for 3600 s
T / oCAlloyα-Zr(O)Prior-β
8000Fe149-
0.05Fe146-
0.2Fe156-
0.4Fe200-
9000Fe223-
0.05Fe324166
0.2Fe241170
0.4Fe342203
10000Fe407306
0.05Fe478387
0.2Fe380308
0.4Fe424368
11000Fe-486
0.05Fe-341
0.2Fe-400
0.4Fe-462
12000Fe853-
0.05Fe943-
0.2Fe613-
0.4Fe694-
Table 4  Vickers hardnesses of different tissue layers in cross section of four alloys oxidized in 800-1200oC steam for 3600 s
1 Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys[J]. Mater. China, 2022, 41: 354
贾豫婕, 林希衡, 邹小伟 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41: 354
2 Liu J Z. Nuclear Structural Materials[M]. Beijing: Chemical Industry Press, 2007: 5
刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5
3 Wang R S, Geng J Q, Weng L K, et al. Zirconium alloy cladding be-haviors under LOCA condition[J]. Mater. Rev., 2011, 25(suppl.2) :501
王荣山, 耿建桥, 翁立奎 等. LOCA工况下锆合金包壳的行为概述[J]. 材料导报, 2011, 25(): 501
4 Kim J H, Lee M H, Choi B K, et al. Embrittlement behavior of zircaloy-4 cladding during oxidation and water quench[J]. Nucl. Eng. Des., 2005, 235: 67
doi: 10.1016/j.nucengdes.2004.08.030
5 Gao Y, Yang M X, Hu Y, et al. Effect of cooling rate on residual plasticity of homemade ZIRLO alloy after LOCA[J]. Atomic. Energy Sci. Technol., 2019, 53: 1310
高 阳, 杨明馨, 胡 勇 等. 冷却速率对国产ZIRLO合金LOCA后残余塑性的影响[J]. 原子能科学技术, 2019, 53: 1310
6 Grosse M, Stuckert J, Steinbrück M, et al. Secondary hydriding during LOCA—Results from the QUENCH-L0 test[J]. J. Nucl. Mater., 2012, 420: 575
doi: 10.1016/j.jnucmat.2011.11.045
7 Shishov V N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation[J]. J. ASTM Int., 2010, 7: 1
8 Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys[J]. Acta. Metall Sin., 2011, 47: 1216
doi: 10.3724/SP.J.1037.2011.00211
邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为[J]. 金属学报2011, 47: 1216
9 Gao W, Zhang X, Wang Z P, et al. Study of oxidation behavior of M5 and ZIRLO zirconium alloy in high temperature vapor[J]. J. Xi'an Technol. Univ., 2016, 36: 473
高 巍, 张 娴, 王正品 等. M5和ZIRLO合金高温水蒸气氧化行为研究[J]. 西安工业大学学报, 2016, 36: 473
10 Huang W. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-1Nb-xM alloys[D]. Shanghai: Shanghai University, 2020
黄 微. Zr-1Nb-xM合金的常规腐蚀行为及模拟LOCA下的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2020
11 Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200oC[J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
12 Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200oC in steam[J]. Nucl. Power Eng., 2010, 31(2): 85
刘彦章, 邱 军, 刘 欣 等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程, 2010, 31(2): 85
13 Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA)[J]. Atomic Energy Sci Technol., 1993, 27: 376
马树春, 孙源珍, 陈望春 等. PWR失水事故工况下燃料包壳与水蒸汽反应研究[J]. 原子能科学技术, 1993, 27: 376
14 Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy[J]. Rare Met. Mater. Eng., 2022, 51: 1837
张佳楠, 姚美意, 查学鹏 等. 添加Nb对Zr-0.75Sn-0.35Fe-0.15Cr合金高温蒸汽氧化行为的影响[J]. 稀有金属材料与工程, 2022, 51: 1837
15 Qu C. Oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in high-temperature steam[D]. Shanghai: Shanghai University, 2019
瞿 忱. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2019
16 Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al. Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties[A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2011: 1
17 Kim H G, Park J Y, Jeong Y H. Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
doi: 10.1016/j.jnucmat.2005.04.061
18 Wang R S, Weng L K, Zhang Y W, et al. Development of research on corrosion resistance of Zr-Nb alloy[J]. Mater. Rep., 2011, 25(13): 10
王荣山, 翁立奎, 张晏玮 等. Zr-Nb合金耐腐蚀性能的研究进展[J]. 材料导报, 2011, 25(13): 105
19 Toffolon-Masclet C, Barbéris P, Brachet J C, et al. Study of Nb and Fe precipitation in α-phase temperature range (400 to 500℃) in Zr-Nb-(Fe-Sn) alloys[A]. Zirconium in the Nuclear Industry: 14th International Symposium[C]. Stockholm, Sweden: American Society for Testing and Materials, 2005: 1
20 Wang R S, Weng L K, Zhang Y W, et al. Effect of Fe on the precipitate characteristics and out-of-pile corrosion behavior of Zr-1Nb-xFe alloys[J]. Mater. Sci. Forum, 2013, 743-744: 1
doi: 10.4028/www.scientific.net/MSF
21 Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs[A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2000: 609
22 Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests[A]. Zirconium in the nuclear industry: 11th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 1996: 850
23 Li M S. High Temperature Corrosion of Metals[M]. Beijing: Metallurgical Industry Press, 2001: 36
李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 36
24 Wang D, Zhang Y P, Wu S H, et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. J. Nucl. Mater., 2022, 561: 153564
doi: 10.1016/j.jnucmat.2022.153564
25 Négyesi M, Burda J, Bláhová O, et al. The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding[J]. J. Nucl. Mater., 2011, 416: 288
doi: 10.1016/j.jnucmat.2011.06.013
26 Li C B, Song Q, Yang X W, et al. Experimental investigation of the phase relations in the Fe-Zr-Y ternary system[J]. Materials, 2022, 15: 593
doi: 10.3390/ma15020593
27 Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations[J]. Comput. Mater. Sci., 2015, 98: 112
doi: 10.1016/j.commatsci.2014.10.052
28 Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials[J]. J. Nucl. Mater., 2014, 452: 285
doi: 10.1016/j.jnucmat.2014.05.023
29 Hou X M, Chou K C. Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. J. Alloys. Compd., 2011, 509: 2395
doi: 10.1016/j.jallcom.2010.11.028
30 Nagase F, Otomo T, Uetsuka H. Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1,573 K[J]. J. Nucl. Sci. Technol., 2003, 40: 213
doi: 10.1080/18811248.2003.9715351
31 Yan Y, Garrison B E, Smith T S, et al. Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based E110 alloy cladding tubes[J]. MRS Adv., 2017, 2: 1203
doi: 10.1557/adv.2016.641
32 Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O[J]. J. Am. Ceram. Soc., 1977, 60: 341
doi: 10.1111/jace.1977.60.issue-7-8
33 Yao M Y, Luan B F. Zirconium alloys used in water-cooled reactors[A]. Nuclear Reactor Materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 524
姚美意, 栾佰峰. 水冷核反应堆用锆合金[A]. 核反应堆材料[M].上海: 上海交通大学出版社, 2021: 524
34 Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Adv. Eng. Sci., 2021, 53(6): 204
马明星, 朱达川, 王志新 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204
35 Uetsuka H, Furuta T, Kawasaki S. Embrittlement of Zircaloy-4 due to oxidation in environment of stagnant steam[J]. J. Nucl. Sci. Technol., 1982, 19: 158
doi: 10.1080/18811248.1982.9734128
36 Zha X P. Oxidation behavior and mechanical properties of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloy under simulated loss of coolant accident conditions[D]. Shanghai: Shanghai University, 2022: 61
查学鹏. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在模拟失水事故下的氧化行为和力学性能研究[D]. 上海: 上海大学, 2022: 61
[1] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[2] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[3] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[4] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[5] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[6] LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. 金属学报, 2024, 60(5): 585-604.
[7] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[8] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[9] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[10] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[11] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[12] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[13] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[14] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[15] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
No Suggested Reading articles found!