Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 713-726    DOI: 10.11900/0412.1961.2022.00441
Overview Current Issue | Archive | Adv Search |
Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible
ZHANG Bin1, TIAN Da1, SONG Zhuman2, ZHANG Guangping2()
1Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shengyang 110819, China
2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible. Acta Metall Sin, 2023, 59(6): 713-726.

Download:  HTML  PDF(1312KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Service reliability of deep-sea submersible pressure shells is critical for ensuring the safety of the submersibles. To manufacture pressure shells for deep-sea submersibles, titanium alloys have emerged as key materials owing to their exceptional service performances in the deep-sea environment. Herein, use of titanium alloys in deep submersibles is introduced. Then, the latest research on the primary failure modes of titanium alloys, including creep at room temperature, low cycle fatigue, and dwell fatigue, based on the types of titanium alloys used in deep-sea submersibles is reviewed. Additionally, the main factors that affect dwell fatigue, including the micromechanism of dwell fatigue damage and dwell fatigue model, are summarized. This work can serve as a reference for the development of new titanium alloys with high strength and low dwell effect. Finally, specific issues related to the service reliability evaluation of titanium alloy components used in the deep sea are outlined, and future research focuses are presented.

Key words:  deep-sea submersible      titanium alloy      dwell fatigue      service reliability     
Received:  05 September 2022     
ZTFLH:  TG135  
Fund: National Natural Science Foundation of China(51971060);National Natural Science Foundation of China(52171128)
Corresponding Authors:  ZHANG Guangping, professor, Tel:(024)23971938, E-mail: gpzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00441     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/713

NationNameDepth / mMaterialThickness / mmYearRef.
USAAlvin4500Ti6211491974[6,7,17,18,20]
FranceNautile6000TC462-731985[6,7,17,18,20]
USSRMIRI&II6000Martensitic nickel steel-1988[6,17,18,20,21]
JapanShinkai65006500TC4 ELI73.51989[6,7,17,18,21]
RussiaRUS6000Titanium alloy-1990s[20]
RussiaCONSUL6000Titanium alloy-1990s[20]
ChinaJiaolong7000TC4 ELI772010[6,7,18,20]
USANew Alvin6500TC4 ELI71.32014[6,20]
China-4500Ti80-2015[6,19]
China-4500TC4 ELI-2017[6]
ChinaFendouzhe11000Ti62A-2020[22]
Table 1  Design characteristics of pressure spherical shells for main manned submersibles at home and abroad[6,7,17-22]
Alloyσs / MPaσb / MPaA / %Z / %σsc / MPaσbc / MPaAkv2 / JRef.
TC4885-1027924-10698.9-16.438.4-46.2857-1016-30-62[25,31-33]
TC4 ELI841-928960-100412.0-18.033.0-54.0991-10051791-182328-58[24,26,28,29]
Ti80785-897880-9647.0-16.014.0-50.0870-35-63[2,13,26,27,30,34]
Ti62A960-12101185-13158.5-14.017.0-30.01007-1164--[22,35]
Table 2  Basic mechanical properties of TC4, TC4 ELI, Ti80, and Ti62A alloys at room temperature[2,13,22,24-34]
AlloyCreep loading modeMicrostructureσmax / MPaσmax / σsε˙s / (%·s-1)Tc / hεT / %Ref.
TC4 ELICompressionBasketweave794-2.09 × 10-91500-[4]
TC4 ELICompressionBimodal1092-4.07 × 10-81500-[4]
TC4 ELICompressionBasketweave1092-2.12 × 10-81500-[4]
TC4 ELICompressionBimodal794-3.11 × 10-91500-[4]
TC4 ELITensionBimodal5400.60-1500.496[28]
TC4 ELITensionBimodal7200.80-1500.697[28]
TC4 ELITensionBasketweave5560.60-1500.473[28]
TC4 ELITensionBasketweave7420.80-1500.636[28]
TC4 ELICompressionBasketweave6950.70-16000.877[29]
TC4 ELICompressionBasketweave7940.802.11 × 10-1116001.038[29]
TC4 ELICompressionBasketweave8430.856.23 × 10-1116001.129[29]
TC4 ELICompressionBasketweave8930.901.24 × 10-1016001.329[29]
TC4 ELICompressionBasketweave10921.102.12 × 10-1016002.787[29]
TC4 ELICompressionBimodal6950.70-16001.006[29]
TC4 ELICompressionBimodal7940.803.06 × 10-1116001.284[29]
TC4 ELICompressionBimodal8430.858.02 × 10-1116001.413[29]
TC4 ELICompressionBimodal8930.901.62 × 10-1016001.603[29]
TC4 ELICompressionBimodal10921.104.05 × 10-1016003.460[29]
Ti80CompressionBimodal7000.802.35 × 10-92500-[27]
Ti80CompressionBimodal7400.851.03 × 10-82500-[27]
Ti80CompressionBimodal7800.902.47 × 10-82500-[27]
Ti62ACompressionBimodal977-10110.95-1200.600-0.750[22]
Ti62ATensionBimodal891-9330.95-1200.950-1.490[22]
TC4CompressionNear lameller814-9650.95-1200.860-1.830[22]
TC4TensionNear lameller7650.95-1201.57[22]
Table 3  Creep properties of TC4 ELI, Ti80, Ti62A, and TC4 alloys at room temperature[4,22,27-29]
Fig.1  Steady-state creep rates of compressive creep of Ti80[27] and TC4 ELI[29] alloys under different stress levels
Fig.2  Low cycle fatigue life of TC4[52] and TC4 ELI[40] alloys under strain control (a) and TC4 ELI alloy with different microstructures under stress control[4,54] (b)
AlloyMicrostructureσmax / σsσmax / MPaTh / sRNdfRef.
TC4Bimodal0.900-1200.13700[68]
TC4Bimodal0.9507651025205[51]
TC4Bimodal0.95076510016722[51]
TC4 ELI-0.906-60001315[3]
TC4 ELI-0.924-60001060[3]
TC4 ELI-0.941-6000735[3]
TC4 ELI-0.959-1200456[3]
TC4 ELI-0.959-6000306[3]
TC4 ELI-0.959-9000379[3]
TC4 ELI-0.976-6000232[3]
TC4 ELIEquiaxed0.95681512002373[89]
TC4 ELIEquiaxed0.956815120-1238[89]
TC4 ELIEquiaxed0.9568151200.5761[89]
Ti62ABimodal0.9508931018092[22]
Ti62ABimodal0.95089310014534[22]
Table 4  Dwell fatigue properties of TC4, TC4 ELI, and Ti62A titanium alloys at room temperature[3,22,51,68,89]
Fig.3  Dwell fatigue life of TC4 ELI alloy under different dwell time and stress levels[3]
Fig.4  Schematics of stress relaxation (a), Maxwell model (b), plastic deformation of αp grain (c), and relaxation process (d)[118] (αp—primary α phase, αs—secondary α phase; σa—applied stress, εe—elastic strain, εp—plastic strain, η—viscosity, E—Young modulus, σ(t)—time-dependent stress, b —Burgers vector, hi—height of slip steps, ΔLi—increment of the length of the grain after certain loading cycles, θ—angle between slip direction and loading direction, σ0—pileup stress, σc—critical stress)
1 Zhang E, Zhu X L, Jing T, et al. Research status and development trend of pressure resistant structure of deep submersibles [J]. J. Ship Mech., 2021, 25: 1427
张 二, 朱显玲, 荆 腾 等. 深潜器耐压结构研究现状及发展趋势(英文) [J]. 船舶力学, 2021, 25: 1427
2 Yang S L, Song D J, Gao F Y, et al. Effects of slab microstructure type and heat treatment on mechanical properties anisotropy of Ti6321 alloy plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1358
杨胜利, 宋德军, 高福洋 等. 板坯组织类型及热处理对Ti6321合金板材力学性能各向异性的影响 [J]. 中国有色金属学报, 2020, 30: 1358
3 Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136
4 Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
董月成, 方志刚, 常 辉 等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
5 Gorynin I V. Titanium alloys for marine application [J]. Mater. Sci. Eng., 1999, A263: 112
6 Li W Y, Wang S, Liu T, et al. Current status and progress on pressure hull structure of manned deep submersible [J]. Shipbuild. China, 2016, 57: 210
李文跃, 王 帅, 刘 涛 等. 大深度载人潜水器耐压壳结构研究现状及最新进展 [J]. 中国造船, 2016, 57: 210
7 Cao F X. Development of materials for manned deep-ocean submersible [J]. Mater. China, 2011, 30(6): 33
曹福辛. 载人潜水器材料技术发展现状 [J]. 中国材料进展, 2011, 30(6): 33
8 Pan X N, Xu S W, Qian G A, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure [J]. Mater. Sci. Eng., 2020, A798: 140110
9 Wang Q, Ren J Q, Wu Y K, et al. Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Alloys Compd., 2019, 789: 249
doi: 10.1016/j.jallcom.2019.02.302
10 Xu L Y, Wang Y, Jiang P, et al. Effect of annealing temperature on microstructure and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Titanium Ind. Prog., 2020, 37(6): 12
许玲玉, 王 洋, 蒋 鹏 等. 退火温度对Ti-6Al-3Nb-2Zr-1Mo合金组织及力学性能的影响 [J]. 钛工业进展, 2020, 37(6): 12
11 Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
12 Zhang B, Song Z M, Lei L M, et al. Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with α/β lamellar microstructures [J]. J. Mater. Sci. Technol., 2014, 30: 1284
doi: 10.1016/j.jmst.2014.07.012
13 Fan J K, Huang H, Xue X Y, et al. Hot rolled Ti6321 alloy sheets with different initial microstructures: Microstructure, mechanical properties, and anisotropy characteristics [J]. Front. Mater., 2020, 7: 110
doi: 10.3389/fmats.2020.00110
14 Li J X, Liu P F, Tong X Y. A simplified method for studying cyclic creep behaviors of deep-sea manned submersible viewport windows [J]. Int. J. Press. Vessels Pip., 2021, 194: 104565
doi: 10.1016/j.ijpvp.2021.104565
15 Yu C L, Guo Q B, Gong X B, et al. Fatigue life assessment of pressure hull of deep-sea submergence vehicle [J]. Ocean Eng., 2022, 245: 110528
doi: 10.1016/j.oceaneng.2022.110528
16 Greenaway S F, Sullivan K D, Umfress S H, et al. Revised depth of the Challenger deep from submersible transects; including a general method for precise, pressure-derived depths in the ocean [J]. Deep Sea Res., 2021, 178I: 103644
17 Liu T. Research on the design of spherical pressure hull in manned deep-sea submersible [J]. J. Ship Mech., 2007, 11: 214
刘 涛. 深海载人潜水器耐压球壳设计特性分析 [J]. 船舶力学, 2007, 11: 214
18 Kohnen W. Review of deep ocean manned submersible activity in 2013 [J]. Mar. Technol. Soc. J., 2013, 47: 56
doi: 10.4031/MTSJ.47.5.6
19 Chen C M. Study on composition optimization and microstructures and properties of corrosion resistant Ti-Al-Nb-Zr-Mo alloy [D]. Harbin: Harbin Institute of Technology, 2018
陈才敏. 耐蚀Ti-Al-Nb-Zr-Mo合金的成分优化及组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
20 Lei J F, Ma Y J, Yang R, et al. Material and fabrication of the personnel hull for full ocean depth submersible [J]. J. Eng. Stud., 2016, 8: 179
doi: 10.3724/SP.J.1224.2016.00179
雷家峰, 马英杰, 杨 锐 等. 全海深载人潜水器载人球壳的选材及制造技术 [J]. 工程研究-跨学科视野中的工程, 2016, 8: 179
21 Sagalevich A M. 30 years experience of Mir submersibles for the ocean operations [J]. Deep Sea Res., 2018, 155II: 83
22 Xi G Q. Studies on room temperature creep and dwell fatigue properties of marine engineering titanium alloys [D]. Hefei: University of Science and Technology of China, 2021
席国强. 海洋工程用钛合金室温蠕变及保载疲劳性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2021
23 Mao P L. Titanium alloy for ship and its design principle [J]. Shanghai Steel Iron Res., 1995, (4): 50
毛彭龄. 舰船用钛合金及其设计原理 [J]. 上海钢研, 1995, (4): 50
24 Lv Y F, Zhang Y, Jing B Q, et al. Effects of solution treatment on microstructure and properties of TC4ELI titanium alloy [J]. Chin. J. Nonferrous Met., 2010, 20(spec.): 616
吕逸帆, 张 毅, 景宝全 等. 固溶时效对TC4ELI钛合金组织和性能的影响 [J]. 中国有色金属学报, 2010, 20(特刊): 616
25 Liu J Q. Microstructure and impact toughness resistance of TC4 titanium alloy [J]. Hot Work. Technol., 2013, 42(12): 63
刘建强. TC4钛合金的显微组织及其抗冲击韧性 [J]. 热加工工艺, 2013, 42(12): 63
26 Zhao Y Q. The new main titanium alloys used for shipbuilding developed in China and their applications [J]. Mater. China, 2014, 33: 398
赵永庆. 我国创新研制的主要船用钛合金及其应用 [J]. 中国材料进展, 2014, 33: 398
27 Chen B W, Huang J, Dan Z H, et al. Study on high pressure compressive creep behavior at ambient temperature of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Hot Work. Technol., 2018, 47(24): 73
陈博文, 黄 杰, 淡振华 等. Ti-6Al-3Nb-2Zr-1Mo合金常温高压压缩蠕变行为研究 [J]. 热加工工艺, 2018, 47(24): 73
28 Li Y H, Yang R, Qing D G, et al. Effect of microstructure on tensile creep behavior of TC4ELI titanium alloy at room temperature [J]. World Nonferrous Met., 2018, (23): 180
李有华, 杨 蓉, 庆达嘎 等. 显微组织对TC4ELI钛合金常温拉伸蠕变行为影响研究 [J]. 世界有色金属, 2018, (23): 180
29 Wang L, Qu P, Li Y Q, et al. Theoretical and experimental investigations for creep properties of titanium alloy materials [J]. J. Ship Mech., 2018, 22: 464
王 雷, 屈 平, 李艳青 等. 钛合金材料蠕变特性的理论与试验研究 [J]. 船舶力学, 2018, 22: 464
30 Lu J F, Dan Z H, Chen B W, et al. Research progress of high stress induced compression creep of titanium alloys [J]. Mater. China, 2019, 38: 1074
陆嘉飞, 淡振华, 陈博文 等. 高应力诱导型钛合金压缩蠕变研究现状及进展 [J]. 中国材料进展, 2019, 38: 1074
31 Wang K, Wu L, Li Y Z, et al. Study on the overload and dwell-fatigue property of titanium alloy in manned deep submersible [J]. China Ocean Eng., 2020, 34: 738
doi: 10.1007/s13344-020-0067-8
32 Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy [J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为 [J]. 材料研究学报, 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
33 Ao N, Liu D X, Zhang X H, et al. Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2022, 158: 106732
doi: 10.1016/j.ijfatigue.2022.106732
34 Ren J Q, Qi W, Zhang B B, et al. Charpy impact anisotropy and the associated mechanisms in a hot-rolled Ti-6Al-3Nb-2Zr-1Mo alloy plate [J]. Mater. Sci. Eng., 2022, A831: 142187
35 Sun M, Ye W J, Hui S X, et al. Effects of heat treatment on microstructures and tensile properties of Ti-62A alloy plate [J]. Chin. J. Nonferrous Met., 2010, 20(spec.): 681
孙 明, 叶文君, 惠松骁 等. 热处理对Ti-62A合金厚板组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(特刊): 681
36 Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
doi: 10.1016/j.matdes.2010.09.011
37 Chen C Y, Ye D Y, Zhang L N, et al. Effects of tensile/compressive overloads on fatigue crack growth behavior of an extra-low-interstitial titanium alloy [J]. Int. J. Mech. Sci., 2016, 118: 55
doi: 10.1016/j.ijmecsci.2016.09.014
38 Wang H, Wei F R, Cui W J, et al. Thermomechanical treatment of an extra-low interstitial TC4 alloy [J]. Trans. Mater. Heat Treat., 2015, 36: 52
王 海, 魏芬绒, 崔文俊 等. 超低间隙TC4钛合金形变热处理工艺 [J]. 材料热处理学报, 2015, 36: 52
39 Wang Z D, Wang S B, Yang K, et al. In-situ SEM investigation on the fatigue behavior of Ti-6Al-4V ELI fabricated by the powder-blown underwater directed energy deposition technique [J]. Mater. Sci. Eng., 2022, A838: 142783
40 Carrion P E, Shamsaei N, Daniewicz S R, et al. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects [J]. Int. J. Fatigue, 2017, 99: 87
doi: 10.1016/j.ijfatigue.2017.02.013
41 Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure [J]. Mater. Charact., 2019, 151: 103
doi: 10.1016/j.matchar.2019.03.005
42 Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
doi: 10.1016/S1359-6454(99)00426-7
43 Neeraj T, Mills M J. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.%Al alloy [J]. Mater. Sci. Eng., 2001, A319-321: 415
44 Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (< 0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Procedia Eng., 2013, 55: 10
doi: 10.1016/j.proeng.2013.03.212
45 Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Mater. Trans., 1974, 5B: 1207
46 Xu L Y, Wang Y, Wang Q, et al. Study on compressive creep behavior at room temperature and dislocation type of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Dev. Appl. Mater., 2021, 36(1): 17
许玲玉, 王 洋, 王 启 等. Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究 [J]. 材料开发与应用, 2021, 36(1): 17
47 Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
48 Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
doi: 10.1016/S1359-6454(02)00561-X
49 Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, A387-389: 719
50 Zhang Z, Dunne F P E. Microstructural heterogeneity in rate-dependent plasticity of multiphase titanium alloys [J]. J. Mech. Phys. Solids, 2017, 103: 199
doi: 10.1016/j.jmps.2017.03.012
51 Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
doi: 10.1016/j.matdes.2020.108909
52 Zhou S T, Liu J, Huang B Z. Continuum damage mechanics study on low-cycle fatigue damage of Ti alloy TC4 [J]. J. Mech. Strength, 2008, 30: 798
周胜田, 刘 均, 黄宝宗. 钛合金TC4低周疲劳连续损伤力学研究 [J]. 机械强度, 2008, 30: 798
53 Wang R F, Li Y T, An H P. Low cycle fatigue behaviors of Ti-6Al-4V alloy controlled by strain and stress [J]. Key Eng. Mater., 2012, 525-526: 441
doi: 10.4028/www.scientific.net/KEM.525-526
54 Sun Y Y, Chang H, Fang Z G, et al. Effect of microstructure on low cycle fatigue property of TC4 ELI titanium alloy [J]. Rare Met. Mater. Eng., 2020, 49: 1623
孙洋洋, 常 辉, 方志刚 等. TC4 ELI钛合金显微组织对低周疲劳性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 1623
55 Wang F, Cui W C, Pan B B, et al. Normalised fatigue and fracture properties of candidate titanium alloys used in the pressure hull of deep manned submersibles [J]. Ships Offshore Struct., 2014, 9: 297
doi: 10.1080/17445302.2013.785801
56 Sun C Q, Li Y Q, Huang R X, et al. Crack initiation mechanism and fatigue life of titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X: Effects of stress ratio and loading frequency [J]. Mater. Sci. Eng., 2020, A798: 140265
57 Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy [J]. Titanium Ind. Prog., 2018, 35(2): 17
王 雷, 王 琨, 李艳青 等. TC4ELI钛合金低周疲劳性能研究 [J]. 钛工业进展, 2018, 35(2): 17
58 An F P, Liu Q L, Jiang P. Effect of microstructure on low-cycle fatigue property of Ti6321 alloy [J]. Mater. Res. Express, 2021, 8: 096517
59 Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
doi: 10.1016/j.intermet.2020.107058
60 Liu T F, Zhang B, Zhang J F, et al. Effects of notch stress concentration factors on low-cycle fatigue performance of TC4 ELI alloy [J]. Chin. J. Mater. Res., 2022, in press
刘天福, 张 滨, 张均锋 等. 缺口应力集中系数对TC4 ELI合金低周疲劳性能影响的研究 [J]. 材料研究学报, 2022, 已录用)
61 Wang X, Vo P, Jahazi M, et al. Dwell fatigue microstructure in a near-α titanium alloy [J]. Metall. Mater. Trans., 2007, 38A: 831
62 Toubal L, Bocher P, Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy [J]. Int. J. Fatigue, 2009, 31: 601
doi: 10.1016/j.ijfatigue.2008.09.010
63 Chandravanshi V, Prasad K, Singh V, et al. Effects of α + β phase deformation on microstructure, fatigue and dwell fatigue behavior of a near alpha titanium alloy [J]. Int. J. Fatigue, 2016, 91: 100
doi: 10.1016/j.ijfatigue.2016.05.023
64 Zheng Z B, Stapleton A, Fox K, et al. Understanding thermal alleviation in cold dwell fatigue in titanium alloys [J]. Int. J. Plast., 2018, 111: 234
doi: 10.1016/j.ijplas.2018.07.018
65 Littlewood P D, Wilkinson A J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading [J]. Int. J. Fatigue, 2012, 43: 111
doi: 10.1016/j.ijfatigue.2012.03.001
66 Hémery S, Villechaise P. On the influence of ageing on the onset of plastic slip in Ti-6Al-4V at room temperature: Insight on dwell fatigue behavior [J]. Scr. Mater., 2017, 130: 157
doi: 10.1016/j.scriptamat.2016.11.042
67 Lavogiez C, Hémery S, Villechaise P. Concurrent operation of < c  +  a > slip and twinning under cyclic loading of Ti-6Al-4V [J]. Scr. Mater., 2018, 157: 30
doi: 10.1016/j.scriptamat.2018.07.033
68 Lavogiez C, Hémery S, Villechaise P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V [J]. Scr. Mater., 2020, 183: 117
doi: 10.1016/j.scriptamat.2020.03.031
69 Zeng L R, Lei L M, Luo X M, et al. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys [J]. J. Mater. Sci. Technol., 2022, 108: 244
doi: 10.1016/j.jmst.2021.08.041
70 Lefranc P, Doquet V, Gerland M, et al. Nucleation of cracks from shear-induced cavities in an α/β titanium alloy in fatigue, room-temperature creep and dwell-fatigue [J]. Acta Mater., 2008, 56: 4450
doi: 10.1016/j.actamat.2008.04.060
71 Lefranc P, Sarrazinbaudoux C, Doquet V, et al. Investigation of the dwell period's influence on the fatigue crack growth of a titanium alloy [J]. Scr. Mater., 2009, 60: 281
doi: 10.1016/j.scriptamat.2008.09.033
72 Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
73 Hémery S, Villechaise P. Comparison of slip system activation in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-2Sn-4Zr-6Mo under tensile, fatigue and dwell-fatigue loadings [J]. Mater. Sci. Eng., 2017, A697: 177
74 Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
doi: 10.1016/j.actamat.2018.06.033
75 Waheed S, Zheng Z B, Balint D S, et al. Microstructural effects on strain rate and dwell sensitivity in dual-phase titanium alloys [J]. Acta Mater., 2019, 162: 136
doi: 10.1016/j.actamat.2018.09.035
76 Joseph S, Joseph K, Lindley T C, et al. The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy [J]. Int. J. Plast., 2020, 131: 102743
doi: 10.1016/j.ijplas.2020.102743
77 Bache M. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
doi: 10.1016/S0142-1123(03)00145-2
78 McBagonluri F, Akpan E, Mercer C, et al. An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242 [J]. Mater. Sci. Eng., 2005, A405: 111
79 Evans W J. Optimising mechanical properties in alpha + beta titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 89
80 Suri S, Neeraj T, Daehn G S, et al. Mechanisms of primary creep in α/β titanium alloys at lower temperatures [J]. Mater. Sci. Eng., 1997, A234-236: 996
81 Zhang Z, Dunne F P E. Phase morphology, variants and crystallography of alloy microstructures in cold dwell fatigue [J]. Int. J. Fatigue, 2018, 113: 324
doi: 10.1016/j.ijfatigue.2018.03.030
82 Hémery S, Stinville J C. Microstructural and load hold effects on small fatigue crack growth in α + β dual phase Ti alloys [J]. Int. J. Fatigue, 2022, 156: 106699
doi: 10.1016/j.ijfatigue.2021.106699
83 Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
84 Liu Y, Dunne F P E. The mechanistic link between macrozones and dwell fatigue in titanium alloys [J]. Int. J. Fatigue, 2021, 142: 105971
doi: 10.1016/j.ijfatigue.2020.105971
85 Xu Y L, Joseph S, Karamched P, et al. Predicting dwell fatigue life in titanium alloys using modelling and experiment [J]. Nat. Commun., 2020, 11: 5868
doi: 10.1038/s41467-020-19470-w pmid: 33203830
86 Le Biavant K, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 527
doi: 10.1046/j.1460-2695.2002.00480.x
87 Lunt D, Da Fonseca J Q, Rugg D, et al. Microscopic strain localisation in Ti-6Al-4V during uniaxial tensile loading [J]. Mater. Sci. Eng., 2017, A680: 444
88 Venkatramani G, Ghosh S, Mills M. A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys [J]. Acta Mater., 2007, 55: 3971
doi: 10.1016/j.actamat.2007.03.017
89 Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
doi: 10.1016/j.jmst.2020.10.063
90 Song Q Y, Li Y Q, Wang L, et al. Effect of rise and fall time on dwell fatigue behavior of a high strength titanium alloy [J]. Metals, 2019, 9: 914
doi: 10.3390/met9080914
91 Stubbington C A, Pearson S. Effect of dwell on the growth of fatigue cracks in Ti-6Al-4V alloy bar [J]. Eng. Fract. Mech., 1978, 10: 723
doi: 10.1016/0013-7944(78)90030-9
92 Li J, Lu L, Zhang P, et al. Effect of cold creep on fatigue crack growth behavior for commercial pure titanium [J]. Theor. Appl. Fract. Mech., 2018, 97: 177
doi: 10.1016/j.tafmec.2018.08.009
93 Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin, Heidelberg: Springer, 2007: 259
94 Zheng Z B, Balint D S, Dunne F P E. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue [J]. Acta Mater., 2017, 127: 43
doi: 10.1016/j.actamat.2017.01.021
95 Zheng Z B, Balint D S, Dunne F P E. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study [J]. J. Mech. Phys. Solids, 2016, 96: 411
doi: 10.1016/j.jmps.2016.08.008
96 Shi D G, Xu X Y, Wu Y, et al. Influence factors and research progress of dwell fatigue for titanium alloy [J]. Mater. China, 2019, 38: 722
史栋刚, 徐小严, 吴 雨 等. 钛合金保载疲劳的影响因素与研究进展 [J]. 中国材料进展, 2019, 38: 722
97 Sinha V, Schwarz R B, Mills M J, et al. Influence of hydrogen on dwell-fatigue response of near-alpha titanium alloys [J]. Acta Mater., 2020, 188: 315
doi: 10.1016/j.actamat.2019.12.025
98 Evans W J, Bache M R. Hydrogen and fatigue behaviour in a near alpha titanium alloy [J]. Scr. Metall. Mater., 1995, 32: 1019
doi: 10.1016/0956-716X(95)00068-7
99 Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
doi: 10.1016/S1359-6454(03)00289-1
100 Pilchak A L, Williams J C. Observations of facet formation in near-α titanium and comments on the role of hydrogen [J]. Met-all. Mater. Trans., 2011, 42A: 1000
101 Dunne F P E, Walker A, Rugg D. A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue [J]. Proc. Roy. Soc., 2007, 463A: 1467
102 Wu Z H, Kou H C, Chen N N, et al. Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: A review [J]. J. Mater. Res. Technol., 2022, 20: 469
doi: 10.1016/j.jmrt.2022.07.094
103 Zheng Z B, Balint D S, Dunne F P E. Rate sensitivity in discrete dislocation plasticity in hexagonal close-packed crystals [J]. Acta Mater., 2016, 107: 17
doi: 10.1016/j.actamat.2016.01.035
104 Zheng Z B, Balint D S, Dunne F P E. Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys [J]. Int. J. Plast., 2016, 87: 15
doi: 10.1016/j.ijplas.2016.08.009
105 Jun T S, Armstrong D E J, Britton T B. A nanoindentation investigation of local strain rate sensitivity in dual-phase Ti alloys [J]. J. Alloys Compd., 2016, 672: 282
doi: 10.1016/j.jallcom.2016.02.146
106 Zhang Z, Jun T S, Britton T B, et al. Intrinsic anisotropy of strain rate sensitivity in single crystal alpha titanium [J]. Acta Mater., 2016, 118: 317
doi: 10.1016/j.actamat.2016.07.044
107 Zeng L R, Wang L Y, Hua P T, et al. In-situ investigation of dwell fatigue damage mechanism of pure Ti using digital image correlation technique [J]. Mater. Charact., 2021, 181: 111466
doi: 10.1016/j.matchar.2021.111466
108 Tanaka Y, Hattori K, Harada Y. Evaluating local strain rate sensitivity of titanium alloy using dynamic nanoindentation testing [J]. Measurement: Sensors, 2021, 18: 100094
doi: 10.1016/j.measen.2021.100094
109 Zhang Z, Jun T S, Britton T B, et al. Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity [J]. J. Mech. Phys. Solids, 2016, 95: 393
doi: 10.1016/j.jmps.2016.06.007
110 Ashton P J, Jun T S, Zhang Z, et al. The effect of the beta phase on the micromechanical response of dual-phase titanium alloys [J]. Int. J. Fatigue, 2017, 100: 377
doi: 10.1016/j.ijfatigue.2017.03.020
111 Joseph S, Bantounas I, Lindley T C, et al. Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si [J]. Int. J. Plast., 2018, 100: 90
doi: 10.1016/j.ijplas.2017.09.012
112 Zheng Z B, Waheed S, Balint D S, et al. Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity [J]. Int. J. Plast., 2018, 104: 23
doi: 10.1016/j.ijplas.2018.01.011
113 Zhang M D, Cao J X, Li T, et al. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue [J]. Mater. Sci. Eng., 2021, A802: 140643
114 Anahid M, Samal M K, Ghosh S. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys [J]. J. Mech. Phys. Solids, 2011, 59: 2157
doi: 10.1016/j.jmps.2011.05.003
115 Peng J, Zhou C Y, Dai Q, et al. Dwell fatigue and cycle deformation of CP-Ti at ambient temperature [J]. Mater. Des., 2015, 71: 1
doi: 10.1016/j.matdes.2015.01.007
116 Wang F, Wang K, Cui W C. A simplified life estimation method for the spherical hull of deep manned submersibles [J]. Mar. Struct., 2015, 44: 159
doi: 10.1016/j.marstruc.2015.09.003
117 Ota Y, Kubushiro K, Yamazaki Y. The life evaluation by linear cumulative damage rule for cold dwell fatigue of Ti-6Al-4V alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 259
doi: 10.1111/ffe.v45.1
118 Zeng L R. Effect of volume fraction of primary α phase on fatigue properties of Ti-6Al-4V alloy and micromechanism of dwell effect [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
曾令荣. 初生α相体积分数对Ti-6Al-4V合金保载疲劳性能影响及保载效应微观机理研究 [D]. 沈阳: 中国科学院金属研究所, 2017
119 Dowling N E. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue [M]. 4th Ed., Boston: Pearson, 2013: 457
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[3] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[6] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[7] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[8] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[9] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[10] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[11] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[12] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[13] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[14] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[15] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
No Suggested Reading articles found!