1School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 2State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China 3Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China 4School of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Cite this article:
LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy. Acta Metall Sin, 2023, 59(5): 657-667.
Al-Mg-Si alloys are widely used in automotive body panels and parts of the engine owing to their low density, medium strength, high specific strength, good corrosion resistance and other characteristics. Currently, there are many studies on the precipitation behavior of undeformed Al-Mg-Si aluminum alloy, but there is a lack of research on the precipitation evolution and precipitation strengthening mechanism of ultra-fine grained 6061 aluminum alloy at different post-aging temperatures. In this study, the microstructure and mechanical properties of an ultrafine grain 6061 aluminum alloy produced by combining the equal channel angular pressing (ECAP) and post aging methods was comparatively evaluated via TEM, XRD, microhardness tests, and tensile tests. The results indicated that the average grain size of the alloy after two ECAP passes was refined to 210 nm. The average grain size of the alloy after the ECAP pass at 80oC and 20 min post aging was 278 nm; moreover, the fine needle β'', L phase, and Q' phase precipitates at nanoscale were dispersed in the matrix. Furthermore, the tensile and yield strengths were 514 and 483 MPa, respectively, while maintaining a remarkably uniform elongation of 15.1%. These results indicate that numerous dislocations introduced by ECAP in the matrix provide a location for the nucleation of the precipitate, which accelerates the precipitation kinetics during the post aging process. The high strength and toughness of the ECAP alloy after low temperature post aging can be attributed to the grain refinement strengthening, dislocation strengthening, and nanoprecipitation strengthening. Thus, the evolution of the aging precipitates during the ECAP and post aging alloy was analyzed.
Fund: National Natural Science Foundation of China(U1710124);National Natural Science Foundation of China(51871035);National Natural Science Foundation of China(52001159);Open Fund of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University(32115014)
Fig.1 XRD spectra of 6061 aluminum alloy at T6 state (a) and ECAPed and post-aged state (b) (ECAP—equal channel angular pressing, RT—room temperature)
State
DXRD
<ε2>1/2
ρ
nm
%
1014 m-2
ECAP at RT
210
0.16
9.19
ECAP + 80oC, 20 min
211
0.15
9.05
ECAP + 80oC, 180 min
488
0.11
2.78
ECAP + 110oC, 10 min
257
0.14
6.81
ECAP + 170oC, 5 min
395
0.14
5.12
ECAP + 170oC, 180 min
770
0.08
1.27
Table 1 XRD analyses of the ECAPed and post-aged alloy
Fig.2 Mechanical properties of 6061 aluminum alloy after ECAPed and post-aged states (a) hardness curves of ECAP + post-aged at 80, 110, and 170oC specimens (b) engineering stress-strain curves of the ECAPed and post-aged specimens (c) normalized work hardening rates against true strain
Fig.3 TEM images and grain size distributions of ultrafine-grained 6061 aluminum alloy (a-c) TEM bright field (a) and dark field (b) images, and grain size distribution (c) of the ECAPed specimen (Inset in Fig.3a is the corresponding SAED pattern) (d, e) TEM bright field image (d) and grain size distribution (e) of the ECAP + 80oC, 20 min post-aged specimen
Fig.4 TEM analyses of T6 state (a) and ECAP + 80oC, 20 min post-aged states (b-e) 6061 aluminum alloy (a-c) TEM bright field images (Insets show the corresponding SAED and FFT pattern, respectively) (d) interaction between β'' and dislocation in the post-aged specimen (e) statistical measurements from Fig.4b showing the width and the length of the β'' precipitates
Fig.5 HRTEM images of the ECAPed specimen (a), ECAP + 80oC, 20 min post-aged specimen (c), ECAP + 170oC, 180 min post-aged specimen (d), and inverse fast Fouier transform (IFFT) map of lattice fringe at the black box in Fig.5a (b) (The ellipses show examples of dislocation dipoles. The black circles mark interstitial loops and the white circles mark vacancy loops)
Fig.6 Schematics of the evolution of the internal precipitation of the alloy in different states Color online (a) solid-solution treatment (SST) (b) ECAPed (c) high temperature (> 110oC) post-aging after ECAP (d) low temperature (< 80oC) post-aging after ECAP
State
σexp / MPa
σ0.2 / MPa
σgs / MPa
σρ / MPa
σprec / MPa
ECAPed + 80oC, 20 min
483
471
95 (20.2%)
147 (31.2%)
229 (48.6%)
ECAPed + 110oC, 10 min
434
434
93 (21.4%)
129 (29.7%)
212 (48.8%)
ECAPed + 170oC, 5 min
365
370
82 (22.2%)
113 (30.5%)
175 (47.3%)
Table 2 Contributions and proportions of strengthening mechanisms to the strength of the post-aging alloy
State/treatment
σ0.2 / MPa
UTS / MPa
Ef / %
Ref.
6061 ECAP at RT + post-aging
483
514
15.1
This work
Al-Mg-Si-Cu rolling+aging
452
487
10.0
[10]
6061 ECAP at RT + post-aging
411
450
17.8
[13]
6061 under-aging + coldrolling + re-aging
542
560
8.5
[27]
6061 HPT at RT
605
705
6.3
[34]
6061 Friction stir processing
435
505
2.1
[35]
AA6060 HPT at RT
475
525
6.0
[36]
6061 HPT at RT
660
690
5.5
[37]
6061 HPT at RT + post-aging
455
485
15.0
[38]
6061 multi directional forging + aging
409
472
8.9
[39]
6101 hydrostatic extrusion + aging
345
354
5.5
[40]
6061 accumulative roll bonding + aging
450
-
6.5
[41]
Al-Mg-Si-Cu pre-deformation + aging
435
450
7.1
[42]
Table 3 Comprehensive comparisons of tensile properties of 6000 series Al alloys[10,13,27,34-42]
Fig.7 Comprehensive comparisons of yield strength and uniform elongation of Al-Mg-Si alloys[10,13,27,34-42] Color online
1
Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Mater. Sci. Eng., 2000, A280: 37
2
Liu M P, Chen J, Lin Y J, et al. Microstructure, mechanical properties and wear resistance of an Al-Mg-Si alloy produced by equal channel angular pressing[J]. Prog. Nat. Sci. Mater. Int., 2020, 30: 485
doi: 10.1016/j.pnsc.2020.07.005
3
Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy[J]. Acta Mater., 2018, 145: 437
doi: 10.1016/j.actamat.2017.12.036
4
Chen J, Pan Q L, Yu X H, et al. Effect of annealing treatment on microstructure and fatigue crack growth behavior of Al-Zn-Mg-Sc-Zr alloy[J]. J. Cent. South Univ., 2018, 25: 961
doi: 10.1007/s11771-018-3797-5
5
Feng L, Pan Q L, Wei L L, et al. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate[J]. J. Cent. South Univ., 2015, 22: 2423
doi: 10.1007/s11771-015-2769-2
6
Liu M P, Wu Z J, Yang R, et al. DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy[J]. Prog. Nat. Sci. Mater. Int., 2015, 25: 153
doi: 10.1016/j.pnsc.2015.02.004
7
Duan Z C, Chinh N Q, Xu C, et al. Developing processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys[J]. Metall. Mater. Trans., 2010, 41A: 802
8
Wang B F, Sun J Y, Zou J D, et al. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing[J]. J. Cent. South Univ., 2015, 22: 3698
doi: 10.1007/s11771-015-2912-0
9
Liu M P, Xie X F, Zhang Z Y, et al. Deformation-induced solid-state amorphization in a nanostructured Al-Mg alloy processed by high pressure torsion[J]. Mater. Sci. Forum, 2015, 817: 627
doi: 10.4028/www.scientific.net/MSF.817
10
Liu C H, Li X L, Wang S H, et al. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys[J]. Mater. Des., 2014, 54: 144
doi: 10.1016/j.matdes.2013.08.042
11
Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β'' precipitates in an Al-Mg-Si-Cu alloy[J]. Scr. Mater., 2014, 75: 86
doi: 10.1016/j.scriptamat.2013.11.030
12
Cerri E, Leo P. Influence of severe plastic deformation on aging of Al-Mg-Si alloys[J]. Mater. Sci. Eng., 2005, A410-411: 226
13
Kim W J, Kim J K, Park T Y, et al. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing[J]. Metall. Mater. Trans., 2002, 33A: 3155
14
Hockauf K, Meyer L W, Hockauf M, et al. Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment[J]. J. Mater. Sci., 2010, 45: 4754
doi: 10.1007/s10853-010-4544-y
15
Roven H J, Liu M P, Werenskiold J C. Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy[J]. Mater. Sci. Eng., 2008, A483-484: 54
16
Hockauf M, Meyer L W, Zillmann B, et al. Simultaneous improvement of strength and ductility of Al-Mg-Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging[J]. Mater. Sci. Eng., 2009, A503: 167
17
Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite[J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
18
Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy[J]. Acta Mater., 2021, 203: 116455
doi: 10.1016/j.actamat.2020.10.074
19
Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion[J]. Acta Metall. Sin., 2019, 55: 521
Jiang J W, Liu M P, Liu Y, et al. Microstructure and mechanical properties of 6013 aluminium alloy processed by a combination of ECAP and preaging treatment[J]. Mater. Sci. Forum, 2017, 877: 437
doi: 10.4028/www.scientific.net/MSF.877
21
Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys[J]. Metall. Mater. Trans., 2017, 48A: 459
22
Marioara C D, Andersen S J, Røyset J, et al. Improving thermal stability in Cu-containing Al-Mg-Si alloys by precipitate optimization[J]. Metall. Mater. Trans., 2014, 45A: 2938
23
Man J, Jing L, Jie S G. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. J. Alloys Compd., 2007, 437: 146
doi: 10.1016/j.jallcom.2006.07.113
24
Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminium alloy induced by equal channel angular pressing[J]. Chin. J. Mater. Res., 2016, 30: 721
doi: 10.11901/1005.3093.2016.105
Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion[J]. Chin. J. Mater. Res., 2014, 28: 371
Dobatkin S V. On the increase of thermal stability of ultrafine grained materials obtained by severe plastic deformation[J]. Mater. Sci. Forum, 2003, 426-432: 2699
doi: 10.4028/www.scientific.net/MSF.426-432
27
Wang Z X, Li H, Miao F F, et al. Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment[J]. Mater. Sci. Eng., 2014, A607: 313
28
Starink M J, Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Mater., 2003, 51: 5131
doi: 10.1016/S1359-6454(03)00363-X
29
Dunstan D J, Bushby A J. Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size[J]. Int. J. Plast., 2014, 53: 56
doi: 10.1016/j.ijplas.2013.07.004
30
Gubicza J, Chinh N Q, Krállics G, et al. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation[J]. Curr. Appl. Phys., 2006, 6: 194
doi: 10.1016/j.cap.2005.07.039
31
Gutierrez-Urrutia I, Muñoz-Morris M A, Morris D G. Recovery of deformation substructure and coarsening of particles on annealing severely plastically deformed Al-Mg-Si alloy and analysis of strengthening mechanisms[J]. J. Mater. Res., 2006, 21: 329
doi: 10.1557/jmr.2006.0063
32
Muñoz-Morris M A, Oca C G, Morris D G. Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing[J]. Scr. Mater., 2003, 48: 213
doi: 10.1016/S1359-6462(02)00501-8
33
Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress[J]. Acta Mater., 1999, 47: 293
doi: 10.1016/S1359-6454(98)00296-1
34
Moreno-Valle E C, Sabirov I, Perez-Prado M T, et al. Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures[J]. Mater. Lett., 2011, 65: 2917
doi: 10.1016/j.matlet.2011.06.057
35
Wang B B, Liu Y D, Xue P, et al. Prepration and mechanical properties of ultrafine-grained 6061 Al-alloy by friction stir process[J]. Chin. J. Mater. Res., 2021, 35: 321
Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion[J]. Acta Mater., 2014, 63: 169
doi: 10.1016/j.actamat.2013.10.022
37
Nurislamova G, Sauvage X, Murashkin M, et al. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation[J]. Philos. Mag. Lett., 2008, 88: 459
doi: 10.1080/09500830802186938
38
Mohamed I F, Lee S, Edalati K, et al. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging[J]. Metall. Mater. Trans., 2015, 46A: 2664
39
Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy[J]. Mater. Sci. Eng., 2015, A641: 391
40
Majchrowicz K, Pakieła Z, Chrominski W, et al. Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion[J]. Mater. Charact., 2018, 135: 104
doi: 10.1016/j.matchar.2017.11.023
41
Rezaei M R, Toroghinejad M R, Ashrafizadeh F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy[J]. J. Mater. Process. Technol., 2011, 211: 1184
doi: 10.1016/j.jmatprotec.2011.01.023
42
Gu Y, Chen J H, Liu C H, et al. Effect of pre-deformation on age- hardening and microstructure in Al-Mg-Si-Cu alloy[J]. Acta Metall. Sin., 2015, 51: 1400
doi: 10.11900/0412.1961.2015.00113