|
|
Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys |
WANG Changsheng1,2, FU Huadong1,2,3( ), ZHANG Hongtao1,2, XIE Jianxin1,2,3( ) |
1Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China 2Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China 3Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys. Acta Metall Sin, 2023, 59(5): 585-598.
|
Abstract The advancement of integrated circuit manufacturing process and chip packaging technology has improved the performance requirements for lead frame copper alloy. In the field of high-performance copper alloys, balancing and improving mechanical and electrical conductivity (EC) has been a challenge. This work investigates the effect of different cold-rolling deformations (0, 65%, 75%, 85%, and 95%) on the microstructure, properties, and precipitation behavior of Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P alloy to enhance its comprehensive performance through process control. The deformation-aging process parameters of high-performance Cu-Ni-Si alloys were determined by comparing the precipitation and recrystallization initial temperatures, microstructures, and properties of the samples after aging. The effect of cold-rolling deformation on precipitation kinetics and mechanism was studied. By optimizing the process parameters, the properties of the alloy are observed to be better than the existing Cu-Ni-Si alloys after 95% cold-rolling deformation and aging at 450oC for 60 min, with an ultimate tensile strength of (841 ± 10) MPa, and an EC of (52.2 ± 0.3)%IACS. This work's relevant research findings can provide theoretical reference and data support for realizing the comprehensive property enhancement of high-performance copper alloys.
|
Received: 17 May 2021
|
|
Fund: National Key Research and Development Program of China(2020YFB0311101);National Natural Science Foundation of China(51974028);National Natural Science Foundation of China(92066205);Beijing Nova Programs(Z191100001119125);Fund for Xiaomi Young Scholars |
1 |
Jiang Y X, Lou H F, Xie H F, et al. Development status and prospects of advanced copper alloy[J]. Strateg. Study CAE, 2020, 22(5): 84
|
|
姜业欣, 娄花芬, 解浩峰 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84
|
2 |
Lei Q, Xiao Z, Hu W P, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Mater. Sci. Eng., 2017, A697: 37
|
3 |
Lee S, Matsunaga H, Sauvage X, et al. Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging[J]. Mater. Charact., 2014, 90: 62
doi: 10.1016/j.matchar.2014.01.006
|
4 |
Wang C S, Fu H D, Xie J X. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during hot compression[J]. Rare Met., 2021, 40: 156
doi: 10.1007/s12598-020-01578-z
|
5 |
Xu S, Fu H D, Wang Y T, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy[J]. Mater. Sci. Eng., 2018, A726: 208
|
6 |
Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. J. Alloys Compd., 2018, 752: 191
doi: 10.1016/j.jallcom.2018.04.159
|
7 |
Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of CuNiSi alloys[J]. J. Alloys Compd., 2017, 696: 201
doi: 10.1016/j.jallcom.2016.11.233
|
8 |
Li D M, Jiang B B, Li X N, et al. Composition rule of high hardness and electrical conductivity Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
|
|
李冬梅, 姜贝贝, 李晓娜 等. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
|
9 |
Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2008, A483-484: 117
|
10 |
Liu F, Li J, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of Cobalt[J]. J. Alloys Compd., 2021, 862: 158667
doi: 10.1016/j.jallcom.2021.158667
|
11 |
Wang W, Kang H J, Chen Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2016, A673: 378
|
12 |
Hou L L, Yin Z X, Gan C L, et al. Research progress of Cu-Ni-Si alloy for lead frame and its preparation and processing technology[J]. Mater. Res. Appl., 2020, 14: 59
|
|
侯绿林, 尹振兴, 甘春雷 等. 引线框架用Cu-Ni-Si合金及其制备加工工艺的研究进展[J]. 材料研究与应用, 2020, 14: 59
|
13 |
Li J, Huang G J, Mi X J, et al. Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloys[J]. Materials, 2019, 12: 2076
doi: 10.3390/ma12132076
|
14 |
Ghosh G, Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997, 49(3): 56
|
15 |
Chen W, Li Z, Xie H, et al. Influence of Zinc on coarsening of δ-Ni2Si particles, aging behavior and hardness in a Cu-Ni-Si alloy[J]. J. Mater. Eng. Perform., 2017, 26: 2459
doi: 10.1007/s11665-017-2738-z
|
16 |
Zhang Y, Tian B H, Volinsky A A, et al. Microstructure and precipitate's characterization of the Cu-Ni-Si-P alloy[J]. J. Mater. Eng. Perform., 2016, 25: 1336
doi: 10.1007/s11665-016-1987-6
|
17 |
Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying[J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
|
18 |
Peng L J, Ma J M, Liu X Y, et al. Influence of different treatment processes on microstructure and properties of Cu-Ni-Co-Si alloy[J]. Rare Met. Mater. Eng., 2019, 48: 1969
|
|
彭丽军, 马吉苗, 刘兴宇 等. 不同处理工艺对Cu-Ni-Co-Si合金组织与性能的影响[J]. 稀有金属材料与工程, 2019, 48: 1969
|
19 |
Xiao X P, Xu H, Chen J S, et al. Coarsening behavior of (Ni, Co)2Si particles in Cu-Ni-Co-Si alloy during aging treatment[J]. Rare Met., 2019, 38: 1062
doi: 10.1007/s12598-018-1169-9
|
20 |
Feng G B, Yu F X, Cheng J Y, et al. Re-aging behaviour and precipitated phase characteristics of high-performance Cu-Ni-Co-Si alloy[J]. Trans. Mater. Heat Treat., 2019, 40(8): 76
|
|
冯桄波, 余方新, 程建奕 等. 高性能Cu-Ni-Co-Si合金的二次时效行为及析出相特征[J]. 材料热处理学报, 2019, 40(8): 76
|
21 |
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning[J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
|
22 |
Xiao X P, Xiong B Q, Wang Q S, et al. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments[J]. Rare Met., 2013, 32: 144
doi: 10.1007/s12598-013-0024-2
|
23 |
Kareva N T, Yakovleva I L, Samoilova O V. On the precipitation strengthening of Cu-2.6Ni-0.6Si-0.6Cr bronzes[J]. Phys. Met. Metallogr., 2017, 118: 795
doi: 10.1134/S0031918X17080075
|
24 |
Li H X, Hao X J, Zhao G, et al. Effect of plastic deformation on discontinuous coarsening of spinodally decomposed microstructure in Cu-Ni-Fe alloy[J]. Acta Metall. Sin., 1999, 35: 449
|
|
李洪晓, 郝新江, 赵 刚 等. 塑性变形对Cu-Ni-Fe合金失稳分解组织不连续粗化的影响[J]. 金属学报, 1999, 35: 449
|
25 |
Rdzawski Z, Stobrawa J. Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Mater. Sci. Technol., 1993, 9: 142
doi: 10.1179/mst.1993.9.2.142
|
26 |
Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling[J]. J. Alloys Compd., 2006, 417: 116
doi: 10.1016/j.jallcom.2005.09.037
|
27 |
Watanabe H, Kunimine T, Watanabe C, et al. Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging[J]. Mater. Sci. Eng., 2018, A730: 10
|
28 |
Liu F, Mi X J, Ma J M, et al. Microstructure and properties of low concentration of Cu-Ni-Si alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 286
|
|
刘 峰, 米绪军, 马吉苗 等. 低浓度Cu-Ni-Si合金的组织与性能[J]. 中国有色金属学报, 2019, 29: 286
|
29 |
Wang Y H, Wang M P, Hong B, et al. Microstructure and properties of Cu-15Ni-8Sn-0.4Si alloy[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1051
|
30 |
Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications[J]. Mater. Sci. Eng., 2021, A809: 140521
|
31 |
Lei Q, Li Z, Gao Y, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. J. Alloys Compd., 2017, 695: 2413
doi: 10.1016/j.jallcom.2016.11.137
|
32 |
Yang J Z, Bu K, Song K X, et al. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips[J]. Mater. Sci. Eng., 2020, A798: 140120
|
33 |
Han S Z, Choi E A, Lim S H, et al. Alloy design strategies to increase strength and its trade-offs together[J]. Prog. Mater. Sci., 2021, 117: 100720
doi: 10.1016/j.pmatsci.2020.100720
|
34 |
Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Sci. China Technol. Sci., 2020, 63: 2505
doi: 10.1007/s11431-020-1633-8
|
35 |
Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys[J]. J. Mater. Res. Technol., 2020, 9: 11918
doi: 10.1016/j.jmrt.2020.08.055
|
36 |
Jiang L, Fu H D, Wang C S, et al. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing[J]. Metall. Mater. Trans., 2020, 51A: 331
|
37 |
Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy[J]. Trans. Mater. Heat Treat., 2014, 35(8): 58
|
|
黄国杰, 肖翔鹏, 马吉苗 等. 固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响[J]. 材料热处理学报, 2014, 35(8): 58
|
38 |
Yi J, Jia Y L, Zhao Y Y, et al. Precipitation behavior of Cu-3.0Ni-0.72Si alloy[J]. Acta Mater., 2019, 166: 261
doi: 10.1016/j.actamat.2018.12.047
|
39 |
Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Mater. Sci. Eng., 2019, A742: 501
|
40 |
Hu T, Chen J Z, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater., 2013, 61: 1210
doi: 10.1016/j.actamat.2012.10.031
|
41 |
Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J. Alloys Compd., 2014, 614: 189
doi: 10.1016/j.jallcom.2014.06.089
|
42 |
Liao Y H, Xie M W, Chen H M, et al. Thermodynamics and kinetics of discontinuous precipitation in Cu-9Ni-xSn alloy[J]. J. Alloys Compd., 2020, 827: 154314
doi: 10.1016/j.jallcom.2020.154314
|
43 |
Lei Q, Li Z, Pan Z Y, et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
doi: 10.1016/S1003-6326(09)60249-1
|
44 |
Su J H, Liu P, Li H J, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Mater. Lett., 2007, 61: 4963
doi: 10.1016/j.matlet.2007.03.085
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|