Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (5): 623-636    DOI: 10.11900/0412.1961.2020.00507
Research paper Current Issue | Archive | Adv Search |
Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel
ZHANG Jiarong1,2, LI Yanfen2,3(), WANG Guangquan2,4, BAO Feiyang2,4, RUI Xiang2,4, SHI Quanqiang2,3, YAN Wei2,3, SHAN Yiyin2,3(), YANG Ke2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel. Acta Metall Sin, 2022, 58(5): 623-636.

Download:  HTML  PDF(5923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxide dispersion strengthened (ODS) steel is a promising structural material for advanced nuclear power systems. In this study, an ultra-low carbon 9Cr-ODS steel with a bimodal grain structure was prepared using powder metallurgy, and a superior matching of strength and plasticity was expected by adjusting the soft-hard matching of the coarse-grained and fine-grained regions. The effects of heat treatment on microstructure and mechanical properties of the ultra-low carbon 9Cr-ODS steel were evaluated through OM, SEM, TEM, microhardness, and tensile tests. The results demonstrated that the ultra-low carbon 9Cr-ODS steel exhibited a tempered martensite structure after normalizing at 1050-1200oC, and then tempering at 700 and 750oC. Moreover, it presented the microstructure characteristics of coarse-grained and fine-grained regions, in which the average grain size of fine-grained regions was 1.6 μm and that of coarse-grained regions was 4.3 μm. The dislocation density in the ultra-low carbon 9Cr-ODS steel was very high and the number density of nano-scale oxide particles was up to about 1022 m-3. The microhardness in fine-grained regions was higher than that in coarse-grained regions. As the normalizing temperature increased, the microhardness of the ultra-low carbon 9Cr-ODS steel first increased and then decreased. The microhardness reached the highest after normalizing at 1100oC. When the normalizing temperature increased to 1200oC, the microhardness decreased due to the growth of austenitic grains. Regarding the tempering temperature, the microhardness first decreased and then increased as the tempering temperature increased from 700oC to 800oC. Furthermore, the decrease in microhardness when tempering at 700 and 750oC was because the microstructure was recovered and softened. The higher the tempering temperature, the lower the microhardness. However, when tempering at 800oC, the microhardness increased significantly, mainly due to the partial austenite transformation of martensite. The tensile test results at 25oC showed that the strength of the ultra-low carbon 9Cr-ODS steel first decreased and then increased by increasing the tempering temperature, which was consistent with the microhardness change while the opposite was observed for elongation. The tensile test results at 700oC showed that the strength of the ultra-low carbon 9Cr-ODS steel slightly decreased by increasing the tempering temperature. Moreover, the fracture morphology was dominated by fine dimples and secondary tearing, indicating that the ultra-low carbon 9Cr-ODS steel underwent ductile fracture. Combined with the mechanical property and fracture analysis results, the ultra-low carbon 9Cr-ODS steel exhibited superior matching of strength and plasticity after normalizing at 1150oC for 1 h and tempering at 750oC for 1 h.

Key words:  ODS steel      heat treatment      bimodal grain      microstructure      mechanical property     
Received:  18 December 2020     
ZTFLH:  TG156.1  
Fund: National Natural Science Foundation of China(51971217);Excellent Scholar Funding of Institute of Metal Research, Chinese Academy of Sciences(JY7A7A111A1)
About author:  LI Yanfen, professor, Tel: (024)23978990, E-mail: yfli@imr.ac.cnSHAN Yiyin, professor, Tel: (024)23971517, E-mail: yyshan@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00507     OR     https://www.ams.org.cn/EN/Y2022/V58/I5/623

Normalizing processTempering process
1050oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1100oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1150oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1200oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
Table 1  Heat treatments design for ultra-low carbon 9Cr-ODS steel
Fig.1  SEM images of powders before (a) and after (b) ball milling for 90 h
Fig.2  Distribution diagram of particle size before and after ball milling
Fig.3  OM images of ultra-low carbon 9Cr-ODS steel normalized at 1150oC, 1 h and tempered at different temperatures
(a) 1150oC, 1 h, AC (b) 1150oC, 1 h, AC + 700oC, 1 h, AC
(c) 1150oC, 1 h, AC + 750oC, 1 h, AC (d) 1150oC, 1 h, AC + 800oC, 1 h, AC
Fig.4  OM images of ultra-low carbon 9Cr-ODS steel under different heat treatmens
(a) 1050oC, 1 h, AC + 750oC, 1 h, AC (b) 1050oC, 1 h, AC + 800oC, 1 h, AC
(c) 1100oC, 1 h, AC + 750oC, 1 h, AC (d) 1100oC, 1 h, AC + 800oC, 1 h, AC
(e) 1200oC, 1 h, AC + 750oC, 1 h, AC (f) 1200oC, 1 h, AC + 800 oC, 1 h, AC
Fig.5  Low (a, b) and high (c, d) magnified bright field TEM images (a, c) and corresponding high angle annular dark field (HAADF) images (b, d) of ultra-low carbon 9Cr-ODS steel normalized at 1150oC, 1 h and tempered at 750oC, 1 h
Fig.6  Microhardness of ultra-low carbon 9Cr-ODS steel under different heat treatments
(a) influence of normalizing temperature on microhardness of coarse-grained and fine-grained regions
(b) influence of tempering temperature on microhardness of coarse-grained (b1) and fine-grained (b2) regions after different temperature normalizations
Fig.7  Tensile properties of ultra-low carbon 9Cr-ODS steel under different heat treatments tested at room temperatur (25oC)
(a) dependence of strength on tempering temperature (σb—ultimate tensile strength, σ0.2—yield strength)
(b) dependence of total elongation on tempering temperature
Fig.8  Tensile properties of ultra-low carbon 9Cr-ODS steel under different heat treatments tested at 700oC
(a) dependence of strength on tempering temperature
(b) dependence of total elongation on tempering temperature
Fig.9  Low (a, c, e) and locally high (b, d, f) magnified tensile fracture SEM images of ultra-low carbon 9Cr-ODS steel tested at room temperature after normalization at 1150oC, 1 h + tempering at 700oC (a, b), 750oC (c, d), and 800oC (e, f) (CG represents coarse-grained region and FG represents fine-grained region)
Fig.10  Low (a, c, e) and locally high (b, d, f) magnified tensile fracture SEM images of ultra-low carbon 9Cr-ODS steel tested at 700oC after normalization at 1150oC, 1 h + tempering at 700oC (a, b), 750oC (c, d), and 800 oC (e, f)
Fig.11  Distributions of grain size of fine-grained regions (a) and coarse-grained regions (b) after normalizing at 1150oC for 1 h and tempering at 750oC for 1 h
Fig.12  Schematics of fracture of ultra-low carbon 9Cr-ODS steel with bimodal grain structure
(a) a bimodal microstructure after rolling
(b) cavitation, crack initiation, and crack tip blunting
(c) crack propagation and fracture failure
1 Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atom. Energy Sci. Technol., 2020, 54: 1638
荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
2 Li G X, Zhou B X, Xiao M, et al. Overall development strategy of China's new-generation nuclear fuel [J]. Strateg. Study CAE, 2019, 21: 6
李冠兴, 周邦新, 肖 岷 等. 中国新一代核能核燃料总体发展战略研究 [J]. 中国工程科学, 2019, 21: 6
3 Xu Y P, Lü Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
4 Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092005
5 Hsiung L L, Fluss M J, Tumey S J, et al. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance [J]. Phys. Rev., 2010, 82B: 184103
6 Feng Y C, Xing W W, Wang S L, et al. First-principles study of hydrogen behaviors at oxide/ferrite interface in ODS steels [J]. Acta Metall. Sin., 2018, 54: 325
冯宇超, 邢炜伟, 王寿龙 等. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究 [J]. 金属学报, 2018, 54: 325
7 Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
8 Laurent-Brocq M, Legendre F, Mathon M H, et al. Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels [J]. Acta Mater., 2012, 60: 7150
doi: 10.1016/j.actamat.2012.09.024
9 Zilnyk K D, Oliveira V B, Sandim H R Z, et al. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study [J]. J. Nucl. Mater., 2015, 462: 360
doi: 10.1016/j.jnucmat.2014.12.112
10 Jarugula R, Koppoju S, Jeyaraam R, et al. On the understanding of microstructural evolution during hot deformation of n-ODS-18Cr ferritic steel containing heterogeneous microstructure [J]. Mater. Sci. Eng., 2021, A800: 140343
11 Alam M E, Pal S, Fields K, et al. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy [J]. Mater. Sci. Eng., 2016, A675: 437
12 Steckmeyer A, Praud M, Fournier B, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel [J]. J. Nucl. Mater., 2010, 405: 95
doi: 10.1016/j.jnucmat.2010.07.027
13 Guo L, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
14 Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations [J]. Mater. Sci. Eng., 2013, A559: 101
15 Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
16 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
17 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
18 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
19 Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics [J]. Mater. Sci. Eng., 2014, A598: 106
20 Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h—Mechanical properties and microstructure [J]. Mater. Sci. Eng., 2020, A783: 139292
21 Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800oC [J]. J. Iron Steel Res. Int., 2017, 24: 858
22 Xu Y T, Zhang X Y, Tian Y B, et al. Study on the nucleation and growth of M23C6 carbides in a 10%Cr martensite ferritic steel after long-term aging [J]. Mater. Charact., 2016, 111: 122
doi: 10.1016/j.matchar.2015.11.023
23 Grybėnas A, Makarevičius V, Baltušnikas A, et al. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging [J]. Mater. Sci. Eng., 2017, A696: 453
24 Hu X, Huang L X, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging [J]. Mater. Sci. Eng., 2013, A586: 253
25 Ohtsuka S, Ukai S, Fujiwara M. Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels [J]. J. Nucl. Mater., 2006, 351: 241
doi: 10.1016/j.jnucmat.2006.02.006
26 Das A, Chekhonin P, Altstadt E, et al. Microstructure and fracture toughness characterization of three 9Cr ODS EUROFER steels with different thermo-mechanical treatments [J]. J. Nucl. Mater., 2020, 542: 152464
doi: 10.1016/j.jnucmat.2020.152464
27 Ukai S, Narita T, Alamo A, et al. Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 356
doi: 10.1016/j.jnucmat.2004.04.082
28 Sandim H R Z, Renzetti R A, Padilha A F, et al. Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel [J]. Mater. Sci. Eng., 2010, A527: 3602
29 Wang G Q, Li Y F, Zhang J R, et al. Design and preliminary characterization of a novel carbide-free 9Cr-ODS martensitic steel [J]. Fusion Eng. Des., 2020, 160: 111824
doi: 10.1016/j.fusengdes.2020.111824
30 Shen J J, Yang H L, Li Y F, et al. Microstructural stability of an as-fabricated 12Cr-ODS steel under elevated-temperature annealing [J]. J. Alloys Compd., 2017, 695: 1946
doi: 10.1016/j.jallcom.2016.11.029
31 He P, Hoffmann J, Möslang A. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5%Cr ODS ferritic steel powders by joint application of XAFS and TEM [J]. J. Nucl. Mater., 2018, 501: 381
doi: 10.1016/j.jnucmat.2018.01.021
32 Lu H, Zhang C, Xu J X, et al. Effects of N addition and annealing treatment on microstructures and mechanical properties of ODS steels [J]. J. Nucl. Mater., 2019, 527: 151796
doi: 10.1016/j.jnucmat.2019.151796
33 Oskooie M S, Asgharzadeh H. Strength and ductility enhancement in nanostructured AI6063 with a bimodal grain size distribution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2014, 63: 012022
34 Sun S L, He W W, Zhang M G, et al. Grain growth rule of austenite grain in the heating process of P92 heat-resistant steel [J]. J. Plast. Eng., 2013, 20(3): 92
孙述利, 何文武, 张敏刚 等. P92耐热钢加热过程中奥氏体晶粒长大规律 [J]. 塑性工程学报, 2013, 20(3): 92
35 Christ B W, Smith G V. Comparison of the Hall-Petch parameters of zone-refined iron determined by the grain size and extrapolation methods [J]. Acta Metall., 1967, 15: 809
doi: 10.1016/0001-6160(67)90362-8
36 Lu K, Liu X D, Hu Z Q. The Hall-Petch relation in nanocrystalline materials [J]. Chin. J. Mater. Res., 1994, 8: 385
卢 柯, 刘学东, 胡壮麒. 纳米晶体材料的Hall-Petch关系 [J]. 材料研究学报, 1994, 8: 385
37 Sun J J, Yang C, Guo S W, et al. A novel process to obtain lamella structured low-carbon steel with bimodal grain size distribution for potentially improving mechanical property [J]. Mater. Sci. Eng., 2020, A785: 139339
38 Guo M X, Zhu J, Zhang Y, et al. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability [J]. Mater. Charact., 2017, 132: 248
doi: 10.1016/j.matchar.2017.08.013
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!